File size: 142,724 Bytes
94147cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "X4cRE8IbIrIV"
},
"source": [
"If you're opening this Notebook on colab, you will probably need to install 🤗 Transformers and 🤗 Datasets. Uncomment the following cell and run it."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "MOsHUjgdIrIW"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Defaulting to user installation because normal site-packages is not writeable\n",
"Collecting datasets\n",
" Downloading datasets-2.8.0-py3-none-any.whl (452 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m452.9/452.9 kB\u001b[0m \u001b[31m56.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting transformers\n",
" Downloading transformers-4.25.1-py3-none-any.whl (5.8 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.8/5.8 MB\u001b[0m \u001b[31m140.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hCollecting multiprocess\n",
" Downloading multiprocess-0.70.14-py38-none-any.whl (132 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.0/132.0 kB\u001b[0m \u001b[31m40.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: packaging in ./.local/lib/python3.8/site-packages (from datasets) (21.3)\n",
"Requirement already satisfied: numpy>=1.17 in ./.local/lib/python3.8/site-packages (from datasets) (1.23.4)\n",
"Collecting huggingface-hub<1.0.0,>=0.2.0\n",
" Downloading huggingface_hub-0.11.1-py3-none-any.whl (182 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m182.4/182.4 kB\u001b[0m \u001b[31m48.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting responses<0.19\n",
" Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n",
"Collecting xxhash\n",
" Downloading xxhash-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (213 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m213.0/213.0 kB\u001b[0m \u001b[31m55.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: requests>=2.19.0 in ./.local/lib/python3.8/site-packages (from datasets) (2.28.1)\n",
"Collecting dill<0.3.7\n",
" Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m35.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting aiohttp\n",
" Downloading aiohttp-3.8.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m113.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting fsspec[http]>=2021.11.1\n",
" Downloading fsspec-2022.11.0-py3-none-any.whl (139 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m139.5/139.5 kB\u001b[0m \u001b[31m37.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: tqdm>=4.62.1 in ./.local/lib/python3.8/site-packages (from datasets) (4.64.1)\n",
"Requirement already satisfied: pyyaml>=5.1 in /usr/lib/python3/dist-packages (from datasets) (5.3.1)\n",
"Requirement already satisfied: pandas in ./.local/lib/python3.8/site-packages (from datasets) (1.5.1)\n",
"Collecting pyarrow>=6.0.0\n",
" Downloading pyarrow-10.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.0 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m36.0/36.0 MB\u001b[0m \u001b[31m88.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hCollecting tokenizers!=0.11.3,<0.14,>=0.11.1\n",
" Downloading tokenizers-0.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.6/7.6 MB\u001b[0m \u001b[31m141.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hCollecting regex!=2019.12.17\n",
" Downloading regex-2022.10.31-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (772 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m772.3/772.3 kB\u001b[0m \u001b[31m107.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: filelock in /usr/lib/python3/dist-packages (from transformers) (3.0.12)\n",
"Requirement already satisfied: charset-normalizer<3.0,>=2.0 in ./.local/lib/python3.8/site-packages (from aiohttp->datasets) (2.1.1)\n",
"Collecting async-timeout<5.0,>=4.0.0a3\n",
" Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n",
"Collecting aiosignal>=1.1.2\n",
" Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n",
"Collecting multidict<7.0,>=4.5\n",
" Downloading multidict-6.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (121 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m121.3/121.3 kB\u001b[0m \u001b[31m35.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting yarl<2.0,>=1.0\n",
" Downloading yarl-1.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (262 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m262.1/262.1 kB\u001b[0m \u001b[31m55.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting frozenlist>=1.1.1\n",
" Downloading frozenlist-1.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (161 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m161.3/161.3 kB\u001b[0m \u001b[31m40.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: attrs>=17.3.0 in /usr/lib/python3/dist-packages (from aiohttp->datasets) (19.3.0)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in ./.local/lib/python3.8/site-packages (from huggingface-hub<1.0.0,>=0.2.0->datasets) (4.4.0)\n",
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/lib/python3/dist-packages (from packaging->datasets) (2.4.6)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests>=2.19.0->datasets) (2.8)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests>=2.19.0->datasets) (2019.11.28)\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/lib/python3/dist-packages (from requests>=2.19.0->datasets) (1.25.8)\n",
"Collecting urllib3<1.27,>=1.21.1\n",
" Downloading urllib3-1.26.13-py2.py3-none-any.whl (140 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m140.6/140.6 kB\u001b[0m \u001b[31m40.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.1 in ./.local/lib/python3.8/site-packages (from pandas->datasets) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in ./.local/lib/python3.8/site-packages (from pandas->datasets) (2022.5)\n",
"Requirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.14.0)\n",
"Installing collected packages: tokenizers, xxhash, urllib3, regex, pyarrow, multidict, fsspec, frozenlist, dill, async-timeout, yarl, multiprocess, aiosignal, responses, huggingface-hub, aiohttp, transformers, datasets\n",
"Successfully installed aiohttp-3.8.3 aiosignal-1.3.1 async-timeout-4.0.2 datasets-2.8.0 dill-0.3.6 frozenlist-1.3.3 fsspec-2022.11.0 huggingface-hub-0.11.1 multidict-6.0.4 multiprocess-0.70.14 pyarrow-10.0.1 regex-2022.10.31 responses-0.18.0 tokenizers-0.13.2 transformers-4.25.1 urllib3-1.26.13 xxhash-3.2.0 yarl-1.8.2\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m22.3.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython3 -m pip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"! pip install datasets transformers"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "oc3pMkfOvSzY"
},
"source": [
"If you're opening this notebook locally, make sure your environment has an install from the last version of those libraries.\n",
"\n",
"To be able to share your model with the community and generate results like the one shown in the picture below via the inference API, there are a few more steps to follow.\n",
"\n",
"First you have to store your authentication token from the Hugging Face website (sign up [here](https://huggingface.co/join) if you haven't already!) then execute the following cell and input your username and password:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "lWbvUuN3vSzZ"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "04c95803576244b6bc7cf04dd300c67f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from huggingface_hub import notebook_login\n",
"\n",
"notebook_login()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FVBxLe_6vSzZ"
},
"source": [
"Then you need to install Git-LFS. Uncomment the following instructions:"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"id": "DN3lw5X5vSza"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Reading package lists... Done\n",
"Building dependency tree \n",
"Reading state information... Done\n",
"The following NEW packages will be installed:\n",
" git-lfs\n",
"0 upgraded, 1 newly installed, 0 to remove and 6 not upgraded.\n",
"Need to get 3316 kB of archives.\n",
"After this operation, 11.1 MB of additional disk space will be used.\n",
"Get:1 http://archive.ubuntu.com/ubuntu focal/universe amd64 git-lfs amd64 2.9.2-1 [3316 kB]\n",
"Fetched 3316 kB in 1s (4030 kB/s) \u001b[0m[33m\u001b[33m\n",
"\n",
"\u001b7\u001b[0;23r\u001b8\u001b[1ASelecting previously unselected package git-lfs.\n",
"(Reading database ... 272556 files and directories currently installed.)\n",
"Preparing to unpack .../git-lfs_2.9.2-1_amd64.deb ...\n",
"\u001b7\u001b[24;0f\u001b[42m\u001b[30mProgress: [ 0%]\u001b[49m\u001b[39m [..........................................................] \u001b8\u001b7\u001b[24;0f\u001b[42m\u001b[30mProgress: [ 20%]\u001b[49m\u001b[39m [###########...............................................] \u001b8Unpacking git-lfs (2.9.2-1) ...\n",
"\u001b7\u001b[24;0f\u001b[42m\u001b[30mProgress: [ 40%]\u001b[49m\u001b[39m [#######################...................................] \u001b8Setting up git-lfs (2.9.2-1) ...\n",
"\u001b7\u001b[24;0f\u001b[42m\u001b[30mProgress: [ 60%]\u001b[49m\u001b[39m [##################################........................] \u001b8\u001b7\u001b[24;0f\u001b[42m\u001b[30mProgress: [ 80%]\u001b[49m\u001b[39m [##############################################............] \u001b8Processing triggers for man-db (2.9.1-1) ...\n",
"\n",
"\u001b7\u001b[0;24r\u001b8\u001b[1A\u001b[J"
]
}
],
"source": [
"!sudo apt install git-lfs"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "54XElYrGvSza"
},
"source": [
"Make sure your version of Transformers is at least 4.11.0 since the functionality was introduced in that version:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "qL-_mnsDvSza"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ubuntu/.local/lib/python3.8/site-packages/pandas/core/computation/expressions.py:20: UserWarning: Pandas requires version '2.7.3' or newer of 'numexpr' (version '2.7.1' currently installed).\n",
" from pandas.core.computation.check import NUMEXPR_INSTALLED\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.25.1\n"
]
}
],
"source": [
"import transformers\n",
"\n",
"print(transformers.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HFASsisvIrIb"
},
"source": [
"You can find a script version of this notebook to fine-tune your model in a distributed fashion using multiple GPUs or TPUs [here](https://github.com/huggingface/transformers/tree/master/examples/question-answering)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rEJBSTyZIrIb"
},
"source": [
"# Fine-tuning a model on a question-answering task"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GCHbIXpFvSzc"
},
"source": [
"In this notebook, we will see how to fine-tune one of the [🤗 Transformers](https://github.com/huggingface/transformers) model to a question answering task, which is the task of extracting the answer to a question from a given context. We will see how to easily load a dataset for these kinds of tasks and use the `Trainer` API to fine-tune a model on it.\n",
"\n",
"![Widget inference representing the QA task](https://github.com/huggingface/notebooks/blob/main/examples/images/question_answering.png?raw=1)\n",
"\n",
"**Note:** This notebook finetunes models that answer question by taking a substring of a context, not by generating new text."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4RRkXuteIrIh"
},
"source": [
"This notebook is built to run on any question answering task with the same format as SQUAD (version 1 or 2), with any model checkpoint from the [Model Hub](https://huggingface.co/models) as long as that model has a version with a token classification head and a fast tokenizer (check on [this table](https://huggingface.co/transformers/index.html#bigtable) if this is the case). It might just need some small adjustments if you decide to use a different dataset than the one used here. Depending on you model and the GPU you are using, you might need to adjust the batch size to avoid out-of-memory errors. Set those three parameters, then the rest of the notebook should run smoothly:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "zVvslsfMIrIh"
},
"outputs": [],
"source": [
"# This flag is the difference between SQUAD v1 or 2 (if you're using another dataset, it indicates if impossible\n",
"# answers are allowed or not).\n",
"squad_v2 = False\n",
"model_checkpoint = \"distilbert-base-uncased\"\n",
"batch_size = 16"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "whPRbBNbIrIl"
},
"source": [
"## Loading the dataset"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "W7QYTpxXIrIl"
},
"source": [
"We will use the [🤗 Datasets](https://github.com/huggingface/datasets) library to download the data and get the metric we need to use for evaluation (to compare our model to the benchmark). This can be easily done with the functions `load_dataset` and `load_metric`. "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "IreSlFmlIrIm"
},
"outputs": [],
"source": [
"from datasets import load_dataset, load_metric"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CKx2zKs5IrIq"
},
"source": [
"For our example here, we'll use the [SQUAD dataset](https://rajpurkar.github.io/SQuAD-explorer/). The notebook should work with any question answering dataset provided by the 🤗 Datasets library. If you're using your own dataset defined from a JSON or csv file (see the [Datasets documentation](https://huggingface.co/docs/datasets/loading_datasets.html#from-local-files) on how to load them), it might need some adjustments in the names of the columns used."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 270,
"referenced_widgets": [
"69caab03d6264fef9fc5649bffff5e20",
"3f74532faa86412293d90d3952f38c4a",
"50615aa59c7247c4804ca5cbc7945bd7",
"fe962391292a413ca55dc932c4279fa7",
"299f4b4c07654e53a25f8192bd1d7bbd",
"ad04ed1038154081bbb0c1444784dcc2",
"7c667ad22b5740d5a6319f1b1e3a8097",
"46c2b043c0f84806978784a45a4e203b",
"80e2943be35f46eeb24c8ab13faa6578",
"de5956b5008d4fdba807bae57509c393",
"931db1f7a42f4b46b7ff8c2e1262b994",
"6c1db72efff5476e842c1386fadbbdba",
"ccd2f37647c547abb4c719b75a26f2de",
"d30a66df5c0145e79693e09789d96b81",
"5fa26fc336274073abbd1d550542ee33",
"2b34de08115d49d285def9269a53f484",
"d426be871b424affb455aeb7db5e822e",
"160bf88485f44f5cb6eaeecba5e0901f",
"745c0d47d672477b9bb0dae77b926364",
"d22ab78269cd4ccfbcf70c707057c31b",
"d298eb19eeff453cba51c2804629d3f4",
"a7204ade36314c86907c562e0a2158b8",
"e35d42b2d352498ca3fc8530393786b2",
"75103f83538d44abada79b51a1cec09e",
"f6253931d90543e9b5fd0bb2d615f73a",
"051aa783ff9e47e28d1f9584043815f5",
"0984b2a14115454bbb009df71c1cf36f",
"8ab9dfce29854049912178941ef1b289",
"c9de740e007141958545e269372780a4",
"cbea68b25d6d4ba09b2ce0f27b1726d5",
"5781fc45cf8d486cb06ed68853b2c644",
"d2a92143a08a4951b55bab9bc0a6d0d3",
"a14c3e40e5254d61ba146f6ec88eae25",
"c4ffe6f624ce4e978a0d9b864544941a",
"1aca01c1d8c940dfadd3e7144bb35718",
"9fbbaae50e6743f2aa19342152398186",
"fea27ca6c9504fc896181bc1ff5730e5",
"940d00556cb849b3a689d56e274041c2",
"5cdf9ed939fb42d4bf77301c80b8afca",
"94b39ccfef0b4b08bf2fb61bb0a657c1",
"9a55087c85b74ea08b3e952ac1d73cbe",
"2361ab124daf47cc885ff61f2899b2af",
"1a65887eb37747ddb75dc4a40f7285f2",
"3c946e2260704e6c98593136bd32d921",
"50d325cdb9844f62a9ecc98e768cb5af",
"aa781f0cfe454e9da5b53b93e9baabd8",
"6bb68d3887ef43809eb23feb467f9723",
"7e29a8b952cf4f4ea42833c8bf55342f",
"dd5997d01d8947e4b1c211433969b89b",
"2ace4dc78e2f4f1492a181bcd63304e7",
"bbee008c2791443d8610371d1f16b62b",
"31b1c8a2e3334b72b45b083688c1a20c",
"7fb7c36adc624f7dbbcb4a831c1e4f63",
"0b7c8f1939074794b3d9221244b1344d",
"a71908883b064e1fbdddb547a8c41743",
"2f5223f26c8541fc87e91d2205c39995"
]
},
"id": "s_AY1ATSIrIq",
"outputId": "fd0578d1-8895-443d-b56f-5908de9f1b6b"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "21feeea7ccd44e749972231c4331a767",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading builder script: 0%| | 0.00/5.27k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "47effc76ad1b4766a5bad7fff8eac00d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading metadata: 0%| | 0.00/2.36k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dbcb129d6ca54a6f8d78e036d9b4fc5f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading readme: 0%| | 0.00/7.67k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading and preparing dataset squad/plain_text to /home/ubuntu/.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4ada8de5e6e34dda9375fa5c2729a0a7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading data files: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c7368340802640dd85e028f5690e8f03",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading data: 0%| | 0.00/8.12M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8e35bf58edd745f5a59cc06785ad3160",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading data: 0%| | 0.00/1.05M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d5b2b2f4705d448489778cbe833e92ce",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Extracting data files: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Generating train split: 0%| | 0/87599 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Generating validation split: 0%| | 0/10570 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset squad downloaded and prepared to /home/ubuntu/.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453. Subsequent calls will reuse this data.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0d95a151053f421494532333c5e73b8d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"datasets = load_dataset(\"squad_v2\" if squad_v2 else \"squad\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RzfPtOMoIrIu"
},
"source": [
"The `datasets` object itself is [`DatasetDict`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasetdict), which contains one key for the training, validation and test set."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"id": "GWiVUF0jIrIv",
"outputId": "35e3ea43-f397-4a54-c90c-f2cf8d36873e"
},
"outputs": [
{
"data": {
"text/plain": [
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['id', 'title', 'context', 'question', 'answers'],\n",
" num_rows: 87599\n",
" })\n",
" validation: Dataset({\n",
" features: ['id', 'title', 'context', 'question', 'answers'],\n",
" num_rows: 10570\n",
" })\n",
"})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"datasets"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "39usg-_wvSzg"
},
"source": [
"We can see the training, validation and test sets all have a column for the context, the question and the answers to those questions."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "u3EtYfeHIrIz"
},
"source": [
"To access an actual element, you need to select a split first, then give an index:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"id": "X6HrpprwIrIz",
"outputId": "d7670bc0-42e4-4c09-8a6a-5c018ded7d95"
},
"outputs": [
{
"data": {
"text/plain": [
"{'id': '5733be284776f41900661182',\n",
" 'title': 'University_of_Notre_Dame',\n",
" 'context': 'Architecturally, the school has a Catholic character. Atop the Main Building\\'s gold dome is a golden statue of the Virgin Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the legend \"Venite Ad Me Omnes\". Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.',\n",
" 'question': 'To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France?',\n",
" 'answers': {'text': ['Saint Bernadette Soubirous'], 'answer_start': [515]}}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"datasets[\"train\"][0]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fG0GdisjvSzg"
},
"source": [
"We can see the answers are indicated by their start position in the text (here at character 515) and their full text, which is a substring of the context as we mentioned above."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WHUmphG3IrI3"
},
"source": [
"To get a sense of what the data looks like, the following function will show some examples picked randomly in the dataset (automatically decoding the labels in passing)."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"id": "i3j8APAoIrI3"
},
"outputs": [],
"source": [
"from datasets import ClassLabel, Sequence\n",
"import random\n",
"import pandas as pd\n",
"from IPython.display import display, HTML\n",
"\n",
"def show_random_elements(dataset, num_examples=10):\n",
" assert num_examples <= len(dataset), \"Can't pick more elements than there are in the dataset.\"\n",
" picks = []\n",
" for _ in range(num_examples):\n",
" pick = random.randint(0, len(dataset)-1)\n",
" while pick in picks:\n",
" pick = random.randint(0, len(dataset)-1)\n",
" picks.append(pick)\n",
" \n",
" df = pd.DataFrame(dataset[picks])\n",
" for column, typ in dataset.features.items():\n",
" if isinstance(typ, ClassLabel):\n",
" df[column] = df[column].transform(lambda i: typ.names[i])\n",
" elif isinstance(typ, Sequence) and isinstance(typ.feature, ClassLabel):\n",
" df[column] = df[column].transform(lambda x: [typ.feature.names[i] for i in x])\n",
" display(HTML(df.to_html()))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"id": "SZy5tRB_IrI7",
"outputId": "ba8f2124-e485-488f-8c0c-254f34f24f13",
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>title</th>\n",
" <th>context</th>\n",
" <th>question</th>\n",
" <th>answers</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>570c2257ec8fbc190045bc63</td>\n",
" <td>Antarctica</td>\n",
" <td>Antarctica, on average, is the coldest, driest, and windiest continent, and has the highest average elevation of all the continents. Antarctica is considered a desert, with annual precipitation of only 200 mm (8 in) along the coast and far less inland. The temperature in Antarctica has reached −89.2 °C (−128.6 °F), though the average for the third quarter (the coldest part of the year) is −63 °C (−81 °F). There are no permanent human residents, but anywhere from 1,000 to 5,000 people reside throughout the year at the research stations scattered across the continent. Organisms native to Antarctica include many types of algae, bacteria, fungi, plants, protista, and certain animals, such as mites, nematodes, penguins, seals and tardigrades. Vegetation, where it occurs, is tundra.</td>\n",
" <td>What is Antarctica's annual precipitation along the coast?</td>\n",
" <td>{'text': ['200 mm (8 in)'], 'answer_start': [202]}</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>56f8d30f9e9bad19000a05a5</td>\n",
" <td>Brain</td>\n",
" <td>Once a neuron is in place, it extends dendrites and an axon into the area around it. Axons, because they commonly extend a great distance from the cell body and need to reach specific targets, grow in a particularly complex way. The tip of a growing axon consists of a blob of protoplasm called a growth cone, studded with chemical receptors. These receptors sense the local environment, causing the growth cone to be attracted or repelled by various cellular elements, and thus to be pulled in a particular direction at each point along its path. The result of this pathfinding process is that the growth cone navigates through the brain until it reaches its destination area, where other chemical cues cause it to begin generating synapses. Considering the entire brain, thousands of genes create products that influence axonal pathfinding.</td>\n",
" <td>What two structures does a neuron extend when it is in place during development?</td>\n",
" <td>{'text': ['dendrites and an axon'], 'answer_start': [38]}</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>572654ddf1498d1400e8dc3d</td>\n",
" <td>Department_store</td>\n",
" <td>Marshall Field & Company originated in 1852. It was the premier department store on the main shopping street in the Midwest, State Street in Chicago. Upscale shoppers came by train from throughout the region, patronizing nearby hotels. It grew to become a major chain before converting to the Macy's nameplate on 9 September 2006. Marshall Field's Served as a model for other departments stores in that it had exceptional customer service. Field's also brought with it the now famous Frango mints brand that became so closely identified with Marshall Field's and Chicago from the now defunct Frederick & Nelson Department store. Marshall Field's also had the firsts, among many innovations by Marshall Field's. Field's had the first European buying office, which was located in Manchester, England, and the first bridal registry. The company was the first to introduce the concept of the personal shopper, and that service was provided without charge in every Field's store, until the chain's last days under the Marshall Field's name. It was the first store to offer revolving credit and the first department store to use escalators. Marshall Field's book department in the State Street store was legendary; it pioneered the concept of the \"book signing.\" Moreover, every year at Christmas, Marshall Field's downtown store windows were filled with animated displays as part of the downtown shopping district display; the \"theme\" window displays became famous for their ingenuity and beauty, and visiting the Marshall Field's windows at Christmas became a tradition for Chicagoans and visitors alike, as popular a local practice as visiting the Walnut Room with its equally famous Christmas tree or meeting \"under the clock\" on State Street.</td>\n",
" <td>When did Marshall's convert to the Macy's name?</td>\n",
" <td>{'text': ['9 September 2006'], 'answer_start': [313]}</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>5727b5944b864d1900163afa</td>\n",
" <td>Switzerland</td>\n",
" <td>Swiss citizens are universally required to buy health insurance from private insurance companies, which in turn are required to accept every applicant. While the cost of the system is among the highest it compares well with other European countries in terms of health outcomes; patients who are citizens have been reported as being, in general, highly satisfied with it. In 2012, life expectancy at birth was 80.4 years for men and 84.7 years for women — the highest in the world. However, spending on health is particularly high at 11.4% of GDP (2010), on par with Germany and France (11.6%) and other European countries, and notably less than spending in the USA (17.6%). From 1990, a steady increase can be observed, reflecting the high costs of the services provided. With an ageing population and new healthcare technologies, health spending will likely continue to rise.</td>\n",
" <td>In 2012, what was Switzerland's world ranking for life expectancy in 2012?</td>\n",
" <td>{'text': ['highest'], 'answer_start': [459]}</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>572910176aef051400154a10</td>\n",
" <td>Software_testing</td>\n",
" <td>A primary purpose of testing is to detect software failures so that defects may be discovered and corrected. Testing cannot establish that a product functions properly under all conditions but can only establish that it does not function properly under specific conditions. The scope of software testing often includes examination of code as well as execution of that code in various environments and conditions as well as examining the aspects of code: does it do what it is supposed to do and do what it needs to do. In the current culture of software development, a testing organization may be separate from the development team. There are various roles for testing team members. Information derived from software testing may be used to correct the process by which software is developed.</td>\n",
" <td>What does the scope of testing the software also look at?</td>\n",
" <td>{'text': ['examination of code as well as execution of that code'], 'answer_start': [319]}</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>57307593396df91900096125</td>\n",
" <td>Translation</td>\n",
" <td>Relying exclusively on unedited machine translation, however, ignores the fact that communication in human language is context-embedded and that it takes a person to comprehend the context of the original text with a reasonable degree of probability. It is certainly true that even purely human-generated translations are prone to error; therefore, to ensure that a machine-generated translation will be useful to a human being and that publishable-quality translation is achieved, such translations must be reviewed and edited by a human.</td>\n",
" <td>How must machine translations be transformed by a human?</td>\n",
" <td>{'text': ['reviewed and edited'], 'answer_start': [508]}</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>5727cc3a3acd2414000deca2</td>\n",
" <td>Detroit</td>\n",
" <td>Precipitation is moderate and somewhat evenly distributed throughout the year, although the warmer months such as May and June average more, averaging 33.5 inches (850 mm) annually, but historically ranging from 20.49 in (520 mm) in 1963 to 47.70 in (1,212 mm) in 2011. Snowfall, which typically falls in measurable amounts between November 15 through April 4 (occasionally in October and very rarely in May), averages 42.5 inches (108 cm) per season, although historically ranging from 11.5 in (29 cm) in 1881−82 to 94.9 in (241 cm) in 2013−14. A thick snowpack is not often seen, with an average of only 27.5 days with 3 in (7.6 cm) or more of snow cover. Thunderstorms are frequent in the Detroit area. These usually occur during spring and summer.</td>\n",
" <td>How many inches of snow does Detroit get on average?</td>\n",
" <td>{'text': ['42.5'], 'answer_start': [419]}</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>5725b82838643c19005acbc6</td>\n",
" <td>Montevideo</td>\n",
" <td>A few years after its foundation, Montevideo became the main city of the region north of the Río de la Plata and east of the Uruguay River, competing with Buenos Aires for dominance in maritime commerce. The importance of Montevideo as the main port of the Viceroyalty of the Río de la Plata brought it in confrontations with the city of Buenos Aires in various occasions, including several times when it was taken over to be used as a base to defend the eastern province of the Viceroyalty from Portuguese incursions.</td>\n",
" <td>What were Buenos Aires and Montevideo fighting for dominance over?</td>\n",
" <td>{'text': ['maritime commerce'], 'answer_start': [185]}</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>572928341d046914007790e2</td>\n",
" <td>Planck_constant</td>\n",
" <td>Prior to Planck's work, it had been assumed that the energy of a body could take on any value whatsoever – that it was a continuous variable. The Rayleigh–Jeans law makes close predictions for a narrow range of values at one limit of temperatures, but the results diverge more and more strongly as temperatures increase. To make Planck's law, which correctly predicts blackbody emissions, it was necessary to multiply the classical expression by a complex factor that involves h in both the numerator and the denominator. The influence of h in this complex factor would not disappear if it were set to zero or to any other value. Making an equation out of Planck's law that would reproduce the Rayleigh–Jeans law could not be done by changing the values of h, of the Boltzmann constant, or of any other constant or variable in the equation. In this case the picture given by classical physics is not duplicated by a range of results in the quantum picture.</td>\n",
" <td>The Rayleigh-Jeans law makes close predictions for what amount of values?</td>\n",
" <td>{'text': ['a narrow range'], 'answer_start': [193]}</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>570da68e16d0071400510c4c</td>\n",
" <td>Antarctica</td>\n",
" <td>On 6 September 2007, Belgian-based International Polar Foundation unveiled the Princess Elisabeth station, the world's first zero-emissions polar science station in Antarctica to research climate change. Costing $16.3 million, the prefabricated station, which is part of the International Polar Year, was shipped to the South Pole from Belgium by the end of 2008 to monitor the health of the polar regions. Belgian polar explorer Alain Hubert stated: \"This base will be the first of its kind to produce zero emissions, making it a unique model of how energy should be used in the Antarctic.\" Johan Berte is the leader of the station design team and manager of the project which conducts research in climatology, glaciology and microbiology.</td>\n",
" <td>How much did the Princess Elizabeth station cost?</td>\n",
" <td>{'text': ['$16.3 million'], 'answer_start': [212]}</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"show_random_elements(datasets[\"train\"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "n9qywopnIrJH"
},
"source": [
"## Preprocessing the training data"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YVx71GdAIrJH"
},
"source": [
"Before we can feed those texts to our model, we need to preprocess them. This is done by a 🤗 Transformers `Tokenizer` which will (as the name indicates) tokenize the inputs (including converting the tokens to their corresponding IDs in the pretrained vocabulary) and put it in a format the model expects, as well as generate the other inputs that model requires.\n",
"\n",
"To do all of this, we instantiate our tokenizer with the `AutoTokenizer.from_pretrained` method, which will ensure:\n",
"\n",
"- we get a tokenizer that corresponds to the model architecture we want to use,\n",
"- we download the vocabulary used when pretraining this specific checkpoint.\n",
"\n",
"That vocabulary will be cached, so it's not downloaded again the next time we run the cell."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"id": "eXNLu_-nIrJI"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c1933915e10843d883eab552a2fa1302",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/28.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e2426d118db8429b90c93f91499c19fc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/483 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e0571b1421c14fa3afa035fdfbe58d4a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/232k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "98dc0c9c69344299ab098693c413ed14",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/466k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from transformers import AutoTokenizer\n",
" \n",
"tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Vl6IidfdIrJK"
},
"source": [
"The following assertion ensures that our tokenizer is a fast tokenizers (backed by Rust) from the 🤗 Tokenizers library. Those fast tokenizers are available for almost all models, and we will need some of the special features they have for our preprocessing."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"id": "ZvdbKVcivSzj"
},
"outputs": [],
"source": [
"import transformers\n",
"assert isinstance(tokenizer, transformers.PreTrainedTokenizerFast)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RjtIhCZCvSzj"
},
"source": [
"You can check which type of models have a fast tokenizer available and which don't on the [big table of models](https://huggingface.co/transformers/index.html#bigtable)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rowT4iCLIrJK"
},
"source": [
"You can directly call this tokenizer on two sentences (one for the answer, one for the context):"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"id": "a5hBlsrHIrJL",
"outputId": "acdaa98a-a8cd-4a20-89b8-cc26437bbe90"
},
"outputs": [
{
"data": {
"text/plain": [
"{'input_ids': [101, 2054, 2003, 2115, 2171, 1029, 102, 2026, 2171, 2003, 25353, 22144, 2378, 1012, 102], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer(\"What is your name?\", \"My name is Sylvain.\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PHEwQCWOvSzk"
},
"source": [
"Depending on the model you selected, you will see different keys in the dictionary returned by the cell above. They don't matter much for what we're doing here (just know they are required by the model we will instantiate later), you can learn more about them in [this tutorial](https://huggingface.co/transformers/preprocessing.html) if you're interested.\n",
"\n",
"Now one specific thing for the preprocessing in question answering is how to deal with very long documents. We usually truncate them in other tasks, when they are longer than the model maximum sentence length, but here, removing part of the the context might result in losing the answer we are looking for. To deal with this, we will allow one (long) example in our dataset to give several input features, each of length shorter than the maximum length of the model (or the one we set as a hyper-parameter). Also, just in case the answer lies at the point we split a long context, we allow some overlap between the features we generate controlled by the hyper-parameter `doc_stride`:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"id": "JF9nDdEpvSzk"
},
"outputs": [],
"source": [
"max_length = 384 # The maximum length of a feature (question and context)\n",
"doc_stride = 128 # The authorized overlap between two part of the context when splitting it is needed."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZRp_Tr_NvSzk"
},
"source": [
"Let's find one long example in our dataset:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"id": "8su1ZcL1vSzk"
},
"outputs": [],
"source": [
"for i, example in enumerate(datasets[\"train\"]):\n",
" if len(tokenizer(example[\"question\"], example[\"context\"])[\"input_ids\"]) > 384:\n",
" break\n",
"example = datasets[\"train\"][i]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YqBE60lXvSzl"
},
"source": [
"Without any truncation, we get the following length for the input IDs:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"id": "Oe5cLyLYvSzl",
"outputId": "98292ffb-17ee-48ac-e9ff-d82bf13f4a22"
},
"outputs": [
{
"data": {
"text/plain": [
"396"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(tokenizer(example[\"question\"], example[\"context\"])[\"input_ids\"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dka9MlZWvSzl"
},
"source": [
"Now, if we just truncate, we will lose information (and possibly the answer to our question):"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"id": "yLGSVJaEvSzl",
"outputId": "b8702093-03ca-473e-9b03-876862dd8a61"
},
"outputs": [
{
"data": {
"text/plain": [
"384"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(tokenizer(example[\"question\"], example[\"context\"], max_length=max_length, truncation=\"only_second\")[\"input_ids\"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pMOGlhp-vSzm"
},
"source": [
"Note that we never want to truncate the question, only the context, else the `only_second` truncation picked. Now, our tokenizer can automatically return us a list of features capped by a certain maximum length, with the overlap we talked above, we just have to tell it with `return_overflowing_tokens=True` and by passing the stride:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"id": "PdlmMEwFvSzm"
},
"outputs": [],
"source": [
"tokenized_example = tokenizer(\n",
" example[\"question\"],\n",
" example[\"context\"],\n",
" max_length=max_length,\n",
" truncation=\"only_second\",\n",
" return_overflowing_tokens=True,\n",
" stride=doc_stride\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0ppTIYLMvSzm"
},
"source": [
"Now we don't have one list of `input_ids`, but several: "
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"id": "l1TYNC60vSzm",
"outputId": "55e10f52-387a-42c3-e835-f12edb5cdbcd"
},
"outputs": [
{
"data": {
"text/plain": [
"[384, 157]"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"[len(x) for x in tokenized_example[\"input_ids\"]]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PgawQA-7vSzn"
},
"source": [
"And if we decode them, we can see the overlap:"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"id": "3rapuR04vSzn",
"outputId": "84dd4fa0-dab9-4eba-8fb5-d0bd61c791a3"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[CLS] how many wins does the notre dame men's basketball team have? [SEP] the men's basketball team has over 1, 600 wins, one of only 12 schools who have reached that mark, and have appeared in 28 ncaa tournaments. former player austin carr holds the record for most points scored in a single game of the tournament with 61. although the team has never won the ncaa tournament, they were named by the helms athletic foundation as national champions twice. the team has orchestrated a number of upsets of number one ranked teams, the most notable of which was ending ucla's record 88 - game winning streak in 1974. the team has beaten an additional eight number - one teams, and those nine wins rank second, to ucla's 10, all - time in wins against the top team. the team plays in newly renovated purcell pavilion ( within the edmund p. joyce center ), which reopened for the beginning of the 2009 – 2010 season. the team is coached by mike brey, who, as of the 2014 – 15 season, his fifteenth at notre dame, has achieved a 332 - 165 record. in 2009 they were invited to the nit, where they advanced to the semifinals but were beaten by penn state who went on and beat baylor in the championship. the 2010 – 11 team concluded its regular season ranked number seven in the country, with a record of 25 – 5, brey's fifth straight 20 - win season, and a second - place finish in the big east. during the 2014 - 15 season, the team went 32 - 6 and won the acc conference tournament, later advancing to the elite 8, where the fighting irish lost on a missed buzzer - beater against then undefeated kentucky. led by nba draft picks jerian grant and pat connaughton, the fighting irish beat the eventual national champion duke blue devils twice during the season. the 32 wins were [SEP]\n",
"[CLS] how many wins does the notre dame men's basketball team have? [SEP] championship. the 2010 – 11 team concluded its regular season ranked number seven in the country, with a record of 25 – 5, brey's fifth straight 20 - win season, and a second - place finish in the big east. during the 2014 - 15 season, the team went 32 - 6 and won the acc conference tournament, later advancing to the elite 8, where the fighting irish lost on a missed buzzer - beater against then undefeated kentucky. led by nba draft picks jerian grant and pat connaughton, the fighting irish beat the eventual national champion duke blue devils twice during the season. the 32 wins were the most by the fighting irish team since 1908 - 09. [SEP]\n"
]
}
],
"source": [
"for x in tokenized_example[\"input_ids\"][:2]:\n",
" print(tokenizer.decode(x))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Cw7JzXusvSzn"
},
"source": [
"Now this will give us some work to properly treat the answers: we need to find in which of those features the answer actually is, and where exactly in that feature. The models we will use require the start and end positions of these answers in the tokens, so we will also need to to map parts of the original context to some tokens. Thankfully, the tokenizer we're using can help us with that by returning an `offset_mapping`:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"id": "_yEbtSTyvSzn",
"outputId": "4a1ddf42-5751-4383-8d31-b8728ff67a18"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(0, 0), (0, 3), (4, 8), (9, 13), (14, 18), (19, 22), (23, 28), (29, 33), (34, 37), (37, 38), (38, 39), (40, 50), (51, 55), (56, 60), (60, 61), (0, 0), (0, 3), (4, 7), (7, 8), (8, 9), (10, 20), (21, 25), (26, 29), (30, 34), (35, 36), (36, 37), (37, 40), (41, 45), (45, 46), (47, 50), (51, 53), (54, 58), (59, 61), (62, 69), (70, 73), (74, 78), (79, 86), (87, 91), (92, 96), (96, 97), (98, 101), (102, 106), (107, 115), (116, 118), (119, 121), (122, 126), (127, 138), (138, 139), (140, 146), (147, 153), (154, 160), (161, 165), (166, 171), (172, 175), (176, 182), (183, 186), (187, 191), (192, 198), (199, 205), (206, 208), (209, 210), (211, 217), (218, 222), (223, 225), (226, 229), (230, 240), (241, 245), (246, 248), (248, 249), (250, 258), (259, 262), (263, 267), (268, 271), (272, 277), (278, 281), (282, 285), (286, 290), (291, 301), (301, 302), (303, 307), (308, 312), (313, 318), (319, 321), (322, 325), (326, 330), (330, 331), (332, 340), (341, 351), (352, 354), (355, 363), (364, 373), (374, 379), (379, 380), (381, 384), (385, 389), (390, 393), (394, 406), (407, 408), (409, 415), (416, 418)]\n"
]
}
],
"source": [
"tokenized_example = tokenizer(\n",
" example[\"question\"],\n",
" example[\"context\"],\n",
" max_length=max_length,\n",
" truncation=\"only_second\",\n",
" return_overflowing_tokens=True,\n",
" return_offsets_mapping=True,\n",
" stride=doc_stride\n",
")\n",
"print(tokenized_example[\"offset_mapping\"][0][:100])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "evsNSwXrvSzo"
},
"source": [
"This gives, for each index of our input IDS, the corresponding start and end character in the original text that gave our token. The very first token (`[CLS]`) has (0, 0) because it doesn't correspond to any part of the question/answer, then the second token is the same as the characters 0 to 3 of the question:"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"id": "zcoV2__vvSzo",
"outputId": "b9d2aa85-baac-4f10-b13a-755ac00e4b58"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"how How\n"
]
}
],
"source": [
"first_token_id = tokenized_example[\"input_ids\"][0][1]\n",
"offsets = tokenized_example[\"offset_mapping\"][0][1]\n",
"print(tokenizer.convert_ids_to_tokens([first_token_id])[0], example[\"question\"][offsets[0]:offsets[1]])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sCrbTA35vSzo"
},
"source": [
"So we can use this mapping to find the position of the start and end tokens of our answer in a given feature. We just have to distinguish which parts of the offsets correspond to the question and which part correspond to the context, this is where the `sequence_ids` method of our `tokenized_example` can be useful:"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"id": "dBJF4HGUvSzo",
"outputId": "11d12297-036d-47fe-8f17-feaad6f0c905"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[None, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, None, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, None]\n"
]
}
],
"source": [
"sequence_ids = tokenized_example.sequence_ids()\n",
"print(sequence_ids)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PG8V3Xh-vSzp"
},
"source": [
"It returns `None` for the special tokens, then 0 or 1 depending on whether the corresponding token comes from the first sentence past (the question) or the second (the context). Now with all of this, we can find the first and last token of the answer in one of our input feature (or if the answer is not in this feature):"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"id": "OXH3Ee38vSzp",
"outputId": "3e0479c2-5f80-49ed-c895-b6d7034c446c"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"23 26\n"
]
}
],
"source": [
"answers = example[\"answers\"]\n",
"start_char = answers[\"answer_start\"][0]\n",
"end_char = start_char + len(answers[\"text\"][0])\n",
"\n",
"# Start token index of the current span in the text.\n",
"token_start_index = 0\n",
"while sequence_ids[token_start_index] != 1:\n",
" token_start_index += 1\n",
"\n",
"# End token index of the current span in the text.\n",
"token_end_index = len(tokenized_example[\"input_ids\"][0]) - 1\n",
"while sequence_ids[token_end_index] != 1:\n",
" token_end_index -= 1\n",
"\n",
"# Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).\n",
"offsets = tokenized_example[\"offset_mapping\"][0]\n",
"if (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):\n",
" # Move the token_start_index and token_end_index to the two ends of the answer.\n",
" # Note: we could go after the last offset if the answer is the last word (edge case).\n",
" while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:\n",
" token_start_index += 1\n",
" start_position = token_start_index - 1\n",
" while offsets[token_end_index][1] >= end_char:\n",
" token_end_index -= 1\n",
" end_position = token_end_index + 1\n",
" print(start_position, end_position)\n",
"else:\n",
" print(\"The answer is not in this feature.\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "n4j1fRwPvSzp"
},
"source": [
"And we can double check that it is indeed the theoretical answer:"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"id": "51ghsvoqvSzp",
"outputId": "e5bf4a9d-f7c4-43e2-968f-3ea873392190"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"over 1, 600\n",
"over 1,600\n"
]
}
],
"source": [
"print(tokenizer.decode(tokenized_example[\"input_ids\"][0][start_position: end_position+1]))\n",
"print(answers[\"text\"][0])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7UGRp61cvSzp"
},
"source": [
"For this notebook to work with any kind of models, we need to account for the special case where the model expects padding on the left (in which case we switch the order of the question and the context):"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"id": "S4nPL0O0vSzq"
},
"outputs": [],
"source": [
"pad_on_right = tokenizer.padding_side == \"right\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jOpXTOrBvSzq"
},
"source": [
"Now let's put everything together in one function we will apply to our training set. In the case of impossible answers (the answer is in another feature given by an example with a long context), we set the cls index for both the start and end position. We could also simply discard those examples from the training set if the flag `allow_impossible_answers` is `False`. Since the preprocessing is already complex enough as it is, we've kept is simple for this part."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"id": "VbTQuHtGvSzq"
},
"outputs": [],
"source": [
"def prepare_train_features(examples):\n",
" # Some of the questions have lots of whitespace on the left, which is not useful and will make the\n",
" # truncation of the context fail (the tokenized question will take a lots of space). So we remove that\n",
" # left whitespace\n",
" examples[\"question\"] = [q.lstrip() for q in examples[\"question\"]]\n",
"\n",
" # Tokenize our examples with truncation and padding, but keep the overflows using a stride. This results\n",
" # in one example possible giving several features when a context is long, each of those features having a\n",
" # context that overlaps a bit the context of the previous feature.\n",
" tokenized_examples = tokenizer(\n",
" examples[\"question\" if pad_on_right else \"context\"],\n",
" examples[\"context\" if pad_on_right else \"question\"],\n",
" truncation=\"only_second\" if pad_on_right else \"only_first\",\n",
" max_length=max_length,\n",
" stride=doc_stride,\n",
" return_overflowing_tokens=True,\n",
" return_offsets_mapping=True,\n",
" padding=\"max_length\",\n",
" )\n",
"\n",
" # Since one example might give us several features if it has a long context, we need a map from a feature to\n",
" # its corresponding example. This key gives us just that.\n",
" sample_mapping = tokenized_examples.pop(\"overflow_to_sample_mapping\")\n",
" # The offset mappings will give us a map from token to character position in the original context. This will\n",
" # help us compute the start_positions and end_positions.\n",
" offset_mapping = tokenized_examples.pop(\"offset_mapping\")\n",
"\n",
" # Let's label those examples!\n",
" tokenized_examples[\"start_positions\"] = []\n",
" tokenized_examples[\"end_positions\"] = []\n",
"\n",
" for i, offsets in enumerate(offset_mapping):\n",
" # We will label impossible answers with the index of the CLS token.\n",
" input_ids = tokenized_examples[\"input_ids\"][i]\n",
" cls_index = input_ids.index(tokenizer.cls_token_id)\n",
"\n",
" # Grab the sequence corresponding to that example (to know what is the context and what is the question).\n",
" sequence_ids = tokenized_examples.sequence_ids(i)\n",
"\n",
" # One example can give several spans, this is the index of the example containing this span of text.\n",
" sample_index = sample_mapping[i]\n",
" answers = examples[\"answers\"][sample_index]\n",
" # If no answers are given, set the cls_index as answer.\n",
" if len(answers[\"answer_start\"]) == 0:\n",
" tokenized_examples[\"start_positions\"].append(cls_index)\n",
" tokenized_examples[\"end_positions\"].append(cls_index)\n",
" else:\n",
" # Start/end character index of the answer in the text.\n",
" start_char = answers[\"answer_start\"][0]\n",
" end_char = start_char + len(answers[\"text\"][0])\n",
"\n",
" # Start token index of the current span in the text.\n",
" token_start_index = 0\n",
" while sequence_ids[token_start_index] != (1 if pad_on_right else 0):\n",
" token_start_index += 1\n",
"\n",
" # End token index of the current span in the text.\n",
" token_end_index = len(input_ids) - 1\n",
" while sequence_ids[token_end_index] != (1 if pad_on_right else 0):\n",
" token_end_index -= 1\n",
"\n",
" # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).\n",
" if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):\n",
" tokenized_examples[\"start_positions\"].append(cls_index)\n",
" tokenized_examples[\"end_positions\"].append(cls_index)\n",
" else:\n",
" # Otherwise move the token_start_index and token_end_index to the two ends of the answer.\n",
" # Note: we could go after the last offset if the answer is the last word (edge case).\n",
" while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:\n",
" token_start_index += 1\n",
" tokenized_examples[\"start_positions\"].append(token_start_index - 1)\n",
" while offsets[token_end_index][1] >= end_char:\n",
" token_end_index -= 1\n",
" tokenized_examples[\"end_positions\"].append(token_end_index + 1)\n",
"\n",
" return tokenized_examples"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0lm8ozrJIrJR"
},
"source": [
"This function works with one or several examples. In the case of several examples, the tokenizer will return a list of lists for each key:"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"id": "-b70jh26IrJS"
},
"outputs": [],
"source": [
"features = prepare_train_features(datasets['train'][:5])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zS-6iXTkIrJT"
},
"source": [
"To apply this function on all the sentences (or pairs of sentences) in our dataset, we just use the `map` method of our `dataset` object we created earlier. This will apply the function on all the elements of all the splits in `dataset`, so our training, validation and testing data will be preprocessed in one single command. Since our preprocessing changes the number of samples, we need to remove the old columns when applying it."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"id": "DDtsaJeVIrJT",
"outputId": "aa4734bf-4ef5-4437-9948-2c16363da719"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "95736c0d99994e25b21cfa8330d4655b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/88 [00:00<?, ?ba/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "84c918b6e1f242cbb9cede111b4131e4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/11 [00:00<?, ?ba/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"tokenized_datasets = datasets.map(prepare_train_features, batched=True, remove_columns=datasets[\"train\"].column_names)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "voWiw8C7IrJV"
},
"source": [
"Even better, the results are automatically cached by the 🤗 Datasets library to avoid spending time on this step the next time you run your notebook. The 🤗 Datasets library is normally smart enough to detect when the function you pass to map has changed (and thus requires to not use the cache data). For instance, it will properly detect if you change the task in the first cell and rerun the notebook. 🤗 Datasets warns you when it uses cached files, you can pass `load_from_cache_file=False` in the call to `map` to not use the cached files and force the preprocessing to be applied again.\n",
"\n",
"Note that we passed `batched=True` to encode the texts by batches together. This is to leverage the full benefit of the fast tokenizer we loaded earlier, which will use multi-threading to treat the texts in a batch concurrently."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "545PP3o8IrJV"
},
"source": [
"## Fine-tuning the model"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FBiW8UpKIrJW"
},
"source": [
"Now that our data is ready for training, we can download the pretrained model and fine-tune it. Since our task is question answering, we use the `AutoModelForQuestionAnswering` class. Like with the tokenizer, the `from_pretrained` method will download and cache the model for us:"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"id": "TlqNaB8jIrJW",
"outputId": "84916cf3-6e6c-47f3-d081-032ec30a4132"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ecf7620a791427b9190181710de2d76",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/268M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForQuestionAnswering: ['vocab_projector.weight', 'vocab_transform.weight', 'vocab_projector.bias', 'vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_layer_norm.weight']\n",
"- This IS expected if you are initializing DistilBertForQuestionAnswering from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing DistilBertForQuestionAnswering from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of DistilBertForQuestionAnswering were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['qa_outputs.weight', 'qa_outputs.bias']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"from transformers import AutoModelForQuestionAnswering, TrainingArguments, Trainer\n",
"\n",
"model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CczA5lJlIrJX"
},
"source": [
"The warning is telling us we are throwing away some weights (the `vocab_transform` and `vocab_layer_norm` layers) and randomly initializing some other (the `pre_classifier` and `classifier` layers). This is absolutely normal in this case, because we are removing the head used to pretrain the model on a masked language modeling objective and replacing it with a new head for which we don't have pretrained weights, so the library warns us we should fine-tune this model before using it for inference, which is exactly what we are going to do."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_N8urzhyIrJY"
},
"source": [
"To instantiate a `Trainer`, we will need to define three more things. The most important is the [`TrainingArguments`](https://huggingface.co/transformers/main_classes/trainer.html#transformers.TrainingArguments), which is a class that contains all the attributes to customize the training. It requires one folder name, which will be used to save the checkpoints of the model, and all other arguments are optional:"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"id": "Bliy8zgjIrJY"
},
"outputs": [],
"source": [
"model_name = model_checkpoint.split(\"/\")[-1]\n",
"args = TrainingArguments(\n",
" f\"{model_name}-finetuned-squad\",\n",
" evaluation_strategy = \"epoch\",\n",
" learning_rate=2e-5,\n",
" per_device_train_batch_size=batch_size,\n",
" per_device_eval_batch_size=batch_size,\n",
" num_train_epochs=3,\n",
" weight_decay=0.01,\n",
" push_to_hub=True,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "km3pGVdTIrJc"
},
"source": [
"Here we set the evaluation to be done at the end of each epoch, tweak the learning rate, use the `batch_size` defined at the top of the notebook and customize the number of epochs for training, as well as the weight decay.\n",
"\n",
"The last argument to setup everything so we can push the model to the [Hub](https://huggingface.co/models) regularly during training. Remove it if you didn't follow the installation steps at the top of the notebook. If you want to save your model locally in a name that is different than the name of the repository it will be pushed, or if you want to push your model under an organization and not your name space, use the `hub_model_id` argument to set the repo name (it needs to be the full name, including your namespace: for instance `\"sgugger/bert-finetuned-squad\"` or `\"huggingface/bert-finetuned-squad\"`)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EcJm51CvvSzs"
},
"source": [
"Then we will need a data collator that will batch our processed examples together, here the default one will work:"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"id": "8qWzHJ1AvSzs"
},
"outputs": [],
"source": [
"from transformers import default_data_collator\n",
"\n",
"data_collator = default_data_collator"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rXuFTAzDIrJe"
},
"source": [
"We will evaluate our model and compute metrics in the next section (this is a very long operation, so we will only compute the evaluation loss during training).\n",
"\n",
"Then we just need to pass all of this along with our datasets to the `Trainer`:"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"id": "imY1oC3SIrJf"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ubuntu/.local/lib/python3.8/site-packages/huggingface_hub/repository.py:725: FutureWarning: Creating a repository through 'clone_from' is deprecated and will be removed in v0.12. Please create the repository first using `create_repo(..., exists_ok=True)`.\n",
" warnings.warn(\n",
"Cloning https://huggingface.co/MMars/distilbert-base-uncased-finetuned-squad into local empty directory.\n"
]
}
],
"source": [
"trainer = Trainer(\n",
" model,\n",
" args,\n",
" train_dataset=tokenized_datasets[\"train\"],\n",
" eval_dataset=tokenized_datasets[\"validation\"],\n",
" data_collator=data_collator,\n",
" tokenizer=tokenizer,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CdzABDVcIrJg"
},
"source": [
"We can now finetune our model by just calling the `train` method:"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"id": "uNx5pyRlIrJh",
"outputId": "077e661e-d36c-469b-89b8-7ff7f73541ec"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ubuntu/.local/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
" warnings.warn(\n",
"***** Running training *****\n",
" Num examples = 88524\n",
" Num Epochs = 3\n",
" Instantaneous batch size per device = 16\n",
" Total train batch size (w. parallel, distributed & accumulation) = 16\n",
" Gradient Accumulation steps = 1\n",
" Total optimization steps = 16599\n",
" Number of trainable parameters = 66364418\n"
]
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='16599' max='16599' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [16599/16599 55:46, Epoch 3/3]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Epoch</th>\n",
" <th>Training Loss</th>\n",
" <th>Validation Loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>1</td>\n",
" <td>1.219600</td>\n",
" <td>1.180651</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2</td>\n",
" <td>0.956200</td>\n",
" <td>1.121280</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3</td>\n",
" <td>0.747700</td>\n",
" <td>1.164216</td>\n",
" </tr>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-1000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-1000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-1000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-1000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-1000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-1500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-1500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-1500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-1500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-1500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-2000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-2000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-2000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-2000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-2000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-2500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-2500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-2500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-2500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-2500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-3000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-3000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-3000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-3000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-3000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-3500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-3500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-3500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-3500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-3500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-4000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-4000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-4000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-4000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-4000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-4500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-4500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-4500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-4500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-4500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-5000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-5000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-5000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-5000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-5000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-5500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-5500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-5500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-5500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-5500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"***** Running Evaluation *****\n",
" Num examples = 10784\n",
" Batch size = 16\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-6000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-6000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-6000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-6000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-6000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-6500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-6500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-6500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-6500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-6500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-7000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-7000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-7000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-7000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-7000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-7500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-7500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-7500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-7500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-7500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-8000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-8000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-8000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-8000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-8000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-8500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-8500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-8500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-8500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-8500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-9000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-9000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-9000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-9000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-9000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-9500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-9500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-9500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-9500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-9500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-10000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-10000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-10000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-10000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-10000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-10500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-10500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-10500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-10500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-10500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-11000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-11000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-11000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-11000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-11000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"***** Running Evaluation *****\n",
" Num examples = 10784\n",
" Batch size = 16\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-11500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-11500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-11500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-11500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-11500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-12000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-12000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-12000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-12000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-12000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-12500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-12500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-12500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-12500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-12500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-13000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-13000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-13000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-13000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-13000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-13500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-13500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-13500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-13500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-13500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-14000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-14000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-14000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-14000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-14000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-14500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-14500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-14500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-14500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-14500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-15000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-15000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-15000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-15000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-15000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-15500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-15500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-15500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-15500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-15500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-16000\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-16000/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-16000/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-16000/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-16000/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad/checkpoint-16500\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/checkpoint-16500/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/checkpoint-16500/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/checkpoint-16500/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/checkpoint-16500/special_tokens_map.json\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"***** Running Evaluation *****\n",
" Num examples = 10784\n",
" Batch size = 16\n",
"\n",
"\n",
"Training completed. Do not forget to share your model on huggingface.co/models =)\n",
"\n",
"\n"
]
},
{
"data": {
"text/plain": [
"TrainOutput(global_step=16599, training_loss=1.0824026910646385, metrics={'train_runtime': 3347.5605, 'train_samples_per_second': 79.333, 'train_steps_per_second': 4.959, 'total_flos': 2.602335381127373e+16, 'train_loss': 1.0824026910646385, 'epoch': 3.0})"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trainer.train()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9osNI3s-vSzt"
},
"source": [
"Since this training is particularly long, let's save the model just in case we need to restart."
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"id": "QcqlZ1NjvSzt"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Saving model checkpoint to test-squad-trained\n",
"Configuration saved in test-squad-trained/config.json\n",
"Model weights saved in test-squad-trained/pytorch_model.bin\n",
"tokenizer config file saved in test-squad-trained/tokenizer_config.json\n",
"Special tokens file saved in test-squad-trained/special_tokens_map.json\n",
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "71026a6a2a9c4467a36c1d364294c629",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Upload file pytorch_model.bin: 0%| | 32.0k/253M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "412294b1e03d499ba9edf4eb292afda5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Upload file runs/Jan04_22-38-23_150-136-218-146/events.out.tfevents.1672872184.150-136-218-146.35868.0: 100%|#…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"remote: Scanning LFS files for validity, may be slow... \n",
"remote: LFS file scan complete. \n",
"To https://huggingface.co/MMars/distilbert-base-uncased-finetuned-squad\n",
" 36f1fd8..23f99fe main -> main\n",
"\n",
"Dropping the following result as it does not have all the necessary fields:\n",
"{'task': {'name': 'Question Answering', 'type': 'question-answering'}, 'dataset': {'name': 'squad', 'type': 'squad', 'config': 'plain_text', 'split': 'train', 'args': 'plain_text'}}\n",
"To https://huggingface.co/MMars/distilbert-base-uncased-finetuned-squad\n",
" 23f99fe..9ce7a49 main -> main\n",
"\n"
]
}
],
"source": [
"trainer.save_model(\"test-squad-trained\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "JP6CTR_-vSzt"
},
"source": [
"## Evaluation"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sit807DcvSzt"
},
"source": [
"Evaluating our model will require a bit more work, as we will need to map the predictions of our model back to parts of the context. The model itself predicts logits for the start and en position of our answers: if we take a batch from our validation datalaoder, here is the output our model gives us:"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"id": "8aFs9GAqvSzt",
"outputId": "ba3db509-9506-4be2-969e-12c0b352902d"
},
"outputs": [
{
"data": {
"text/plain": [
"odict_keys(['loss', 'start_logits', 'end_logits'])"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"\n",
"for batch in trainer.get_eval_dataloader():\n",
" break\n",
"batch = {k: v.to(trainer.args.device) for k, v in batch.items()}\n",
"with torch.no_grad():\n",
" output = trainer.model(**batch)\n",
"output.keys()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FagCzTEsvSzt"
},
"source": [
"The output of the model is a dict-like object that contains the loss (since we provided labels), the start and end logits. We won't need the loss for our predictions, let's have a look a the logits:"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"id": "swutB426vSzu",
"outputId": "b61d651f-7aea-4cd9-a703-0276bd02f901"
},
"outputs": [
{
"data": {
"text/plain": [
"(torch.Size([16, 384]), torch.Size([16, 384]))"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output.start_logits.shape, output.end_logits.shape"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "M8ro0Lf3vSzu"
},
"source": [
"We have one logit for each feature and each token. The most obvious thing to predict an answer for each featyre is to take the index for the maximum of the start logits as a start position and the index of the maximum of the end logits as an end position."
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"id": "XoJrnuc_vSzu",
"outputId": "c168f296-2a6f-4fbd-d7cc-f2cde4913057"
},
"outputs": [
{
"data": {
"text/plain": [
"(tensor([ 46, 57, 78, 54, 118, 107, 72, 35, 107, 34, 73, 41, 80, 91,\n",
" 156, 35], device='cuda:0'),\n",
" tensor([ 47, 58, 81, 44, 118, 110, 75, 37, 110, 36, 76, 42, 83, 94,\n",
" 158, 35], device='cuda:0'))"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output.start_logits.argmax(dim=-1), output.end_logits.argmax(dim=-1)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WGnoZRwuvSzu"
},
"source": [
"This will work great in a lot of cases, but what if this prediction gives us something impossible: the start position could be greater than the end position, or point to a span of text in the question instead of the answer. In that case, we might want to look at the second best prediction to see if it gives a possible answer and select that instead.\n",
"\n",
"However, picking the second best answer is not as easy as picking the best one: is it the second best index in the start logits with the best index in the end logits? Or the best index in the start logits with the second best index in the end logits? And if that second best answer is not possible either, it gets even trickier for the third best answer.\n",
"\n",
"\n",
"To classify our answers, we will use the score obtained by adding the start and end logits. We won't try to order all the possible answers and limit ourselves to with a hyper-parameter we call `n_best_size`. We'll pick the best indices in the start and end logits and gather all the answers this predicts. After checking if each one is valid, we will sort them by their score and keep the best one. Here is how we would do this on the first feature in the batch:"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"id": "sSG8WJ0fvSzu"
},
"outputs": [],
"source": [
"n_best_size = 20"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"id": "nqr98ymTvSzu"
},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"start_logits = output.start_logits[0].cpu().numpy()\n",
"end_logits = output.end_logits[0].cpu().numpy()\n",
"# Gather the indices the best start/end logits:\n",
"start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()\n",
"end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()\n",
"valid_answers = []\n",
"for start_index in start_indexes:\n",
" for end_index in end_indexes:\n",
" if start_index <= end_index: # We need to refine that test to check the answer is inside the context\n",
" valid_answers.append(\n",
" {\n",
" \"score\": start_logits[start_index] + end_logits[end_index],\n",
" \"text\": \"\" # We need to find a way to get back the original substring corresponding to the answer in the context\n",
" }\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "P4ObsoBtvSzu"
},
"source": [
"And then we can sort the `valid_answers` according to their `score` and only keep the best one. The only point left is how to check a given span is inside the context (and not the question) and how to get back the text inside. To do this, we need to add two things to our validation features:\n",
"- the ID of the example that generated the feature (since each example can generate several features, as seen before);\n",
"- the offset mapping that will give us a map from token indices to character positions in the context.\n",
"\n",
"That's why we will re-process the validation set with the following function, slightly different from `prepare_train_features`:"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"id": "YAoSiv0yvSzv"
},
"outputs": [],
"source": [
"def prepare_validation_features(examples):\n",
" # Some of the questions have lots of whitespace on the left, which is not useful and will make the\n",
" # truncation of the context fail (the tokenized question will take a lots of space). So we remove that\n",
" # left whitespace\n",
" examples[\"question\"] = [q.lstrip() for q in examples[\"question\"]]\n",
"\n",
" # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results\n",
" # in one example possible giving several features when a context is long, each of those features having a\n",
" # context that overlaps a bit the context of the previous feature.\n",
" tokenized_examples = tokenizer(\n",
" examples[\"question\" if pad_on_right else \"context\"],\n",
" examples[\"context\" if pad_on_right else \"question\"],\n",
" truncation=\"only_second\" if pad_on_right else \"only_first\",\n",
" max_length=max_length,\n",
" stride=doc_stride,\n",
" return_overflowing_tokens=True,\n",
" return_offsets_mapping=True,\n",
" padding=\"max_length\",\n",
" )\n",
"\n",
" # Since one example might give us several features if it has a long context, we need a map from a feature to\n",
" # its corresponding example. This key gives us just that.\n",
" sample_mapping = tokenized_examples.pop(\"overflow_to_sample_mapping\")\n",
"\n",
" # We keep the example_id that gave us this feature and we will store the offset mappings.\n",
" tokenized_examples[\"example_id\"] = []\n",
"\n",
" for i in range(len(tokenized_examples[\"input_ids\"])):\n",
" # Grab the sequence corresponding to that example (to know what is the context and what is the question).\n",
" sequence_ids = tokenized_examples.sequence_ids(i)\n",
" context_index = 1 if pad_on_right else 0\n",
"\n",
" # One example can give several spans, this is the index of the example containing this span of text.\n",
" sample_index = sample_mapping[i]\n",
" tokenized_examples[\"example_id\"].append(examples[\"id\"][sample_index])\n",
"\n",
" # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token\n",
" # position is part of the context or not.\n",
" tokenized_examples[\"offset_mapping\"][i] = [\n",
" (o if sequence_ids[k] == context_index else None)\n",
" for k, o in enumerate(tokenized_examples[\"offset_mapping\"][i])\n",
" ]\n",
"\n",
" return tokenized_examples"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NXN-qjJYvSzv"
},
"source": [
"And like before, we can apply that function to our validation set easily:"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"colab": {
"referenced_widgets": [
"32ba04d6240149f49eb48c8d8b7f9aae"
]
},
"id": "37lPt_u2vSzv",
"outputId": "2dcfc9a0-d017-4948-ba5c-4c527a8ec811"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5af7ce8baa5140c884caff5f7e47bbef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/11 [00:00<?, ?ba/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"validation_features = datasets[\"validation\"].map(\n",
" prepare_validation_features,\n",
" batched=True,\n",
" remove_columns=datasets[\"validation\"].column_names\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "g9lwazr0vSzv"
},
"source": [
"Now we can grab the predictions for all features by using the `Trainer.predict` method:"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"id": "kpaUkUlXvSzv",
"outputId": "fba79a19-77ae-47a9-b796-47e0e1920f05"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"The following columns in the test set don't have a corresponding argument in `DistilBertForQuestionAnswering.forward` and have been ignored: offset_mapping, example_id. If offset_mapping, example_id are not expected by `DistilBertForQuestionAnswering.forward`, you can safely ignore this message.\n",
"***** Running Prediction *****\n",
" Num examples = 10784\n",
" Batch size = 16\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"raw_predictions = trainer.predict(validation_features)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wGtkWwtEvSzv"
},
"source": [
"The `Trainer` *hides* the columns that are not used by the model (here `example_id` and `offset_mapping` which we will need for our post-processing), so we set them back:"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"id": "oK3_5QK6vSzv"
},
"outputs": [],
"source": [
"validation_features.set_format(type=validation_features.format[\"type\"], columns=list(validation_features.features.keys()))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Hd42yVT5vSzw"
},
"source": [
"We can now refine the test we had before: since we set `None` in the offset mappings when it corresponds to a part of the question, it's easy to check if an answer is fully inside the context. We also eliminate very long answers from our considerations (with an hyper-parameter we can tune)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"id": "N6NqUgGivSzw"
},
"outputs": [],
"source": [
"max_answer_length = 30"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"id": "aZ01s0RgvSzw",
"outputId": "7332a0a3-d721-49b2-f7c0-eae95734b023"
},
"outputs": [
{
"data": {
"text/plain": [
"[{'score': 15.539335, 'text': 'Denver Broncos'},\n",
" {'score': 13.661739,\n",
" 'text': 'Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers'},\n",
" {'score': 11.69728, 'text': 'Carolina Panthers'},\n",
" {'score': 10.94569, 'text': 'Denver'},\n",
" {'score': 10.793658, 'text': 'Broncos'},\n",
" {'score': 8.916061,\n",
" 'text': 'Broncos defeated the National Football Conference (NFC) champion Carolina Panthers'},\n",
" {'score': 8.514549,\n",
" 'text': 'The American Football Conference (AFC) champion Denver Broncos'},\n",
" {'score': 8.262249,\n",
" 'text': 'Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers 24–10'},\n",
" {'score': 8.133989,\n",
" 'text': 'Denver Broncos defeated the National Football Conference (NFC)'},\n",
" {'score': 7.33582,\n",
" 'text': 'Denver Broncos defeated the National Football Conference (NFC) champion Carolina'},\n",
" {'score': 7.2233815,\n",
" 'text': 'Denver Broncos defeated the National Football Conference'},\n",
" {'score': 6.6373134,\n",
" 'text': 'American Football Conference (AFC) champion Denver Broncos'},\n",
" {'score': 6.636953,\n",
" 'text': 'The American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers'},\n",
" {'score': 6.4271107,\n",
" 'text': 'Denver Broncos defeated the National Football Conference (NFC'},\n",
" {'score': 6.4092493,\n",
" 'text': 'Denver Broncos defeated the National Football Conference (NFC) champion'},\n",
" {'score': 6.2977896, 'text': 'Carolina Panthers 24–10'},\n",
" {'score': 5.9782686, 'text': 'Panthers'},\n",
" {'score': 5.619999,\n",
" 'text': 'Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers 24–10 to earn their third Super Bowl title.'},\n",
" {'score': 5.3713613, 'text': 'Carolina'},\n",
" {'score': 4.81654,\n",
" 'text': 'Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers 24–10 to earn their third Super Bowl title'}]"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"start_logits = output.start_logits[0].cpu().numpy()\n",
"end_logits = output.end_logits[0].cpu().numpy()\n",
"offset_mapping = validation_features[0][\"offset_mapping\"]\n",
"# The first feature comes from the first example. For the more general case, we will need to be match the example_id to\n",
"# an example index\n",
"context = datasets[\"validation\"][0][\"context\"]\n",
"\n",
"# Gather the indices the best start/end logits:\n",
"start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()\n",
"end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()\n",
"valid_answers = []\n",
"for start_index in start_indexes:\n",
" for end_index in end_indexes:\n",
" # Don't consider out-of-scope answers, either because the indices are out of bounds or correspond\n",
" # to part of the input_ids that are not in the context.\n",
" if (\n",
" start_index >= len(offset_mapping)\n",
" or end_index >= len(offset_mapping)\n",
" or offset_mapping[start_index] is None\n",
" or offset_mapping[end_index] is None\n",
" ):\n",
" continue\n",
" # Don't consider answers with a length that is either < 0 or > max_answer_length.\n",
" if end_index < start_index or end_index - start_index + 1 > max_answer_length:\n",
" continue\n",
" if start_index <= end_index: # We need to refine that test to check the answer is inside the context\n",
" start_char = offset_mapping[start_index][0]\n",
" end_char = offset_mapping[end_index][1]\n",
" valid_answers.append(\n",
" {\n",
" \"score\": start_logits[start_index] + end_logits[end_index],\n",
" \"text\": context[start_char: end_char]\n",
" }\n",
" )\n",
"\n",
"valid_answers = sorted(valid_answers, key=lambda x: x[\"score\"], reverse=True)[:n_best_size]\n",
"valid_answers"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6Icr4S0pvSzw"
},
"source": [
"We can compare to the actual ground-truth answer:"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"id": "zlln3VSRvSzw",
"outputId": "69c2f730-4f2b-4264-bfc3-5efc6326570e"
},
"outputs": [
{
"data": {
"text/plain": [
"{'text': ['Denver Broncos', 'Denver Broncos', 'Denver Broncos'],\n",
" 'answer_start': [177, 177, 177]}"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"datasets[\"validation\"][0][\"answers\"]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UGbF10qqvSzx"
},
"source": [
"Our model picked the right as the most likely answer!\n",
"\n",
"As we mentioned in the code above, this was easy on the first feature because we knew it comes from the first example. For the other features, we will need a map between examples and their corresponding features. Also, since one example can give several features, we will need to gather together all the answers in all the features generated by a given example, then pick the best one. The following code builds a map from example index to its corresponding features indices:"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"id": "vJkdc-O6vSzx"
},
"outputs": [],
"source": [
"import collections\n",
"\n",
"examples = datasets[\"validation\"]\n",
"features = validation_features\n",
"\n",
"example_id_to_index = {k: i for i, k in enumerate(examples[\"id\"])}\n",
"features_per_example = collections.defaultdict(list)\n",
"for i, feature in enumerate(features):\n",
" features_per_example[example_id_to_index[feature[\"example_id\"]]].append(i)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gmDKzaD7vSzx"
},
"source": [
"We're almost ready for our post-processing function. The last bit to deal with is the impossible answer (when `squad_v2 = True`). The code above only keeps answers that are inside the context, we need to also grab the score for the impossible answer (which has start and end indices corresponding to the index of the CLS token). When one example gives several features, we have to predict the impossible answer when all the features give a high score to the impossible answer (since one feature could predict the impossible answer just because the answer isn't in the part of the context it has access too), which is why the score of the impossible answer for one example is the *minimum* of the scores for the impossible answer in each feature generated by the example.\n",
"\n",
"We then predict the impossible answer when that score is greater than the score of the best non-impossible answer. All combined together, this gives us this post-processing function:"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"id": "_xVI5OkEvSzx"
},
"outputs": [],
"source": [
"from tqdm.auto import tqdm\n",
"\n",
"def postprocess_qa_predictions(examples, features, raw_predictions, n_best_size = 20, max_answer_length = 30):\n",
" all_start_logits, all_end_logits = raw_predictions\n",
" # Build a map example to its corresponding features.\n",
" example_id_to_index = {k: i for i, k in enumerate(examples[\"id\"])}\n",
" features_per_example = collections.defaultdict(list)\n",
" for i, feature in enumerate(features):\n",
" features_per_example[example_id_to_index[feature[\"example_id\"]]].append(i)\n",
"\n",
" # The dictionaries we have to fill.\n",
" predictions = collections.OrderedDict()\n",
"\n",
" # Logging.\n",
" print(f\"Post-processing {len(examples)} example predictions split into {len(features)} features.\")\n",
"\n",
" # Let's loop over all the examples!\n",
" for example_index, example in enumerate(tqdm(examples)):\n",
" # Those are the indices of the features associated to the current example.\n",
" feature_indices = features_per_example[example_index]\n",
"\n",
" min_null_score = None # Only used if squad_v2 is True.\n",
" valid_answers = []\n",
" \n",
" context = example[\"context\"]\n",
" # Looping through all the features associated to the current example.\n",
" for feature_index in feature_indices:\n",
" # We grab the predictions of the model for this feature.\n",
" start_logits = all_start_logits[feature_index]\n",
" end_logits = all_end_logits[feature_index]\n",
" # This is what will allow us to map some the positions in our logits to span of texts in the original\n",
" # context.\n",
" offset_mapping = features[feature_index][\"offset_mapping\"]\n",
"\n",
" # Update minimum null prediction.\n",
" cls_index = features[feature_index][\"input_ids\"].index(tokenizer.cls_token_id)\n",
" feature_null_score = start_logits[cls_index] + end_logits[cls_index]\n",
" if min_null_score is None or min_null_score < feature_null_score:\n",
" min_null_score = feature_null_score\n",
"\n",
" # Go through all possibilities for the `n_best_size` greater start and end logits.\n",
" start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()\n",
" end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()\n",
" for start_index in start_indexes:\n",
" for end_index in end_indexes:\n",
" # Don't consider out-of-scope answers, either because the indices are out of bounds or correspond\n",
" # to part of the input_ids that are not in the context.\n",
" if (\n",
" start_index >= len(offset_mapping)\n",
" or end_index >= len(offset_mapping)\n",
" or offset_mapping[start_index] is None\n",
" or offset_mapping[end_index] is None\n",
" ):\n",
" continue\n",
" # Don't consider answers with a length that is either < 0 or > max_answer_length.\n",
" if end_index < start_index or end_index - start_index + 1 > max_answer_length:\n",
" continue\n",
"\n",
" start_char = offset_mapping[start_index][0]\n",
" end_char = offset_mapping[end_index][1]\n",
" valid_answers.append(\n",
" {\n",
" \"score\": start_logits[start_index] + end_logits[end_index],\n",
" \"text\": context[start_char: end_char]\n",
" }\n",
" )\n",
" \n",
" if len(valid_answers) > 0:\n",
" best_answer = sorted(valid_answers, key=lambda x: x[\"score\"], reverse=True)[0]\n",
" else:\n",
" # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid\n",
" # failure.\n",
" best_answer = {\"text\": \"\", \"score\": 0.0}\n",
" \n",
" # Let's pick our final answer: the best one or the null answer (only for squad_v2)\n",
" if not squad_v2:\n",
" predictions[example[\"id\"]] = best_answer[\"text\"]\n",
" else:\n",
" answer = best_answer[\"text\"] if best_answer[\"score\"] > min_null_score else \"\"\n",
" predictions[example[\"id\"]] = answer\n",
"\n",
" return predictions"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "foxGFk3cvSzy"
},
"source": [
"And we can apply our post-processing function to our raw predictions:"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"colab": {
"referenced_widgets": [
"347ebed36d3541388e4e821372e91aa4"
]
},
"id": "cF6upjjpvSzy",
"outputId": "676b93ae-33c1-48a4-f0db-2952c52d0a3b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Post-processing 10570 example predictions split into 10784 features.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "153b6f8fff6a4217b1ec1f001032c5e5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/10570 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"final_predictions = postprocess_qa_predictions(datasets[\"validation\"], validation_features, raw_predictions.predictions)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jcdH268jvSzy"
},
"source": [
"Then we can load the metric from the datasets library."
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"id": "7gcq8HL9vSzz"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"<ipython-input-57-69495f532713>:1: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate\n",
" metric = load_metric(\"squad_v2\" if squad_v2 else \"squad\")\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1ec39dce486e4aad87b2284007e62ec2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading builder script: 0%| | 0.00/1.72k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ddb357026e4c423bb0a3b9dbdbcf6801",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading extra modules: 0%| | 0.00/1.12k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"metric = load_metric(\"squad_v2\" if squad_v2 else \"squad\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EhMuNap6vSzz"
},
"source": [
"Then we can call compute on it. We just need to format predictions and labels a bit as it expects a list of dictionaries and not one big dictionary. In the case of squad_v2, we also have to set a `no_answer_probability` argument (which we set to 0.0 here as we have already set the answer to empty if we picked it)."
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"id": "WA3hi-9fvSzz",
"outputId": "59661585-7bf6-4307-8223-103d8a0ac9b8"
},
"outputs": [
{
"data": {
"text/plain": [
"{'exact_match': 76.90633869441817, 'f1': 85.21633717306261}"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"if squad_v2:\n",
" formatted_predictions = [{\"id\": k, \"prediction_text\": v, \"no_answer_probability\": 0.0} for k, v in final_predictions.items()]\n",
"else:\n",
" formatted_predictions = [{\"id\": k, \"prediction_text\": v} for k, v in final_predictions.items()]\n",
"references = [{\"id\": ex[\"id\"], \"answers\": ex[\"answers\"]} for ex in datasets[\"validation\"]]\n",
"metric.compute(predictions=formatted_predictions, references=references)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "x4U3yk2DvSzz"
},
"source": [
"You can now upload the result of the training to the Hub, just execute this instruction:"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"id": "Att_OxGKvSzz"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Saving model checkpoint to distilbert-base-uncased-finetuned-squad\n",
"Configuration saved in distilbert-base-uncased-finetuned-squad/config.json\n",
"Model weights saved in distilbert-base-uncased-finetuned-squad/pytorch_model.bin\n",
"tokenizer config file saved in distilbert-base-uncased-finetuned-squad/tokenizer_config.json\n",
"Special tokens file saved in distilbert-base-uncased-finetuned-squad/special_tokens_map.json\n",
"Dropping the following result as it does not have all the necessary fields:\n",
"{'task': {'name': 'Question Answering', 'type': 'question-answering'}, 'dataset': {'name': 'squad', 'type': 'squad', 'config': 'plain_text', 'split': 'train', 'args': 'plain_text'}}\n"
]
}
],
"source": [
"trainer.push_to_hub()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lXwp9dNuvSzz"
},
"source": [
"You can now share this model with all your friends, family, favorite pets: they can all load it with the identifier `\"your-username/the-name-you-picked\"` so for instance:\n",
"\n",
"```python\n",
"from transformers import AutoModelForQuestionAnswering\n",
"\n",
"model = AutoModelForQuestionAnswering.from_pretrained(\"sgugger/my-awesome-model\")\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "TfiIpMnMvSz0"
},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|