Update README.md
Browse files
README.md
CHANGED
|
@@ -12,190 +12,63 @@ tags:
|
|
| 12 |
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
| 13 |
|
| 14 |
## Model Details
|
|
|
|
| 15 |
|
| 16 |
### Model Description
|
|
|
|
| 17 |
|
| 18 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 19 |
|
| 20 |
|
| 21 |
-
|
| 22 |
-
- **Developed by:** [More Information Needed]
|
| 23 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 24 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 25 |
-
- **Model type:** [More Information Needed]
|
| 26 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 27 |
-
- **License:** [More Information Needed]
|
| 28 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 29 |
-
|
| 30 |
-
### Model Sources [optional]
|
| 31 |
|
| 32 |
<!-- Provide the basic links for the model. -->
|
| 33 |
|
| 34 |
-
- **Repository:**
|
| 35 |
-
- **Paper [optional]:**
|
| 36 |
-
- **Demo [optional]:**
|
| 37 |
-
|
| 38 |
-
## Uses
|
| 39 |
-
|
| 40 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 41 |
-
|
| 42 |
-
### Direct Use
|
| 43 |
-
|
| 44 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 45 |
-
|
| 46 |
-
[More Information Needed]
|
| 47 |
-
|
| 48 |
-
### Downstream Use [optional]
|
| 49 |
-
|
| 50 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 51 |
-
|
| 52 |
-
[More Information Needed]
|
| 53 |
-
|
| 54 |
-
### Out-of-Scope Use
|
| 55 |
-
|
| 56 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 57 |
-
|
| 58 |
-
[More Information Needed]
|
| 59 |
-
|
| 60 |
-
## Bias, Risks, and Limitations
|
| 61 |
-
|
| 62 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 63 |
-
|
| 64 |
-
[More Information Needed]
|
| 65 |
-
|
| 66 |
-
### Recommendations
|
| 67 |
-
|
| 68 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 69 |
-
|
| 70 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 71 |
|
| 72 |
## How to Get Started with the Model
|
| 73 |
|
| 74 |
Use the code below to get started with the model.
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
### Training Data
|
| 81 |
-
|
| 82 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 83 |
-
|
| 84 |
-
[More Information Needed]
|
| 85 |
-
|
| 86 |
-
### Training Procedure
|
| 87 |
-
|
| 88 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 89 |
-
|
| 90 |
-
#### Preprocessing [optional]
|
| 91 |
-
|
| 92 |
-
[More Information Needed]
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
#### Training Hyperparameters
|
| 96 |
-
|
| 97 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 98 |
-
|
| 99 |
-
#### Speeds, Sizes, Times [optional]
|
| 100 |
-
|
| 101 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 102 |
-
|
| 103 |
-
[More Information Needed]
|
| 104 |
-
|
| 105 |
-
## Evaluation
|
| 106 |
-
|
| 107 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 108 |
-
|
| 109 |
-
### Testing Data, Factors & Metrics
|
| 110 |
|
| 111 |
-
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
#### Factors
|
| 118 |
|
| 119 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 120 |
|
| 121 |
-
[More Information Needed]
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 126 |
-
|
| 127 |
-
[More Information Needed]
|
| 128 |
-
|
| 129 |
-
### Results
|
| 130 |
-
|
| 131 |
-
[More Information Needed]
|
| 132 |
-
|
| 133 |
-
#### Summary
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
## Model Examination [optional]
|
| 138 |
-
|
| 139 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 140 |
-
|
| 141 |
-
[More Information Needed]
|
| 142 |
-
|
| 143 |
-
## Environmental Impact
|
| 144 |
-
|
| 145 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 146 |
-
|
| 147 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 148 |
-
|
| 149 |
-
- **Hardware Type:** [More Information Needed]
|
| 150 |
-
- **Hours used:** [More Information Needed]
|
| 151 |
-
- **Cloud Provider:** [More Information Needed]
|
| 152 |
-
- **Compute Region:** [More Information Needed]
|
| 153 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 154 |
-
|
| 155 |
-
## Technical Specifications [optional]
|
| 156 |
-
|
| 157 |
-
### Model Architecture and Objective
|
| 158 |
-
|
| 159 |
-
[More Information Needed]
|
| 160 |
-
|
| 161 |
-
### Compute Infrastructure
|
| 162 |
-
|
| 163 |
-
[More Information Needed]
|
| 164 |
-
|
| 165 |
-
#### Hardware
|
| 166 |
-
|
| 167 |
-
[More Information Needed]
|
| 168 |
-
|
| 169 |
-
#### Software
|
| 170 |
-
|
| 171 |
-
[More Information Needed]
|
| 172 |
-
|
| 173 |
-
## Citation [optional]
|
| 174 |
|
| 175 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 176 |
|
| 177 |
**BibTeX:**
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
## More Information [optional]
|
| 192 |
-
|
| 193 |
-
[More Information Needed]
|
| 194 |
-
|
| 195 |
-
## Model Card Authors [optional]
|
| 196 |
-
|
| 197 |
-
[More Information Needed]
|
| 198 |
-
|
| 199 |
-
## Model Card Contact
|
| 200 |
-
|
| 201 |
-
[More Information Needed]
|
|
|
|
| 12 |
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
| 13 |
|
| 14 |
## Model Details
|
| 15 |
+
GoBERT: Gene Ontology Graph Informed BERT for Universal Gene Function Prediction.
|
| 16 |
|
| 17 |
### Model Description
|
| 18 |
+
First encoder to capture relations among GO functions. Could generate GO function embedding for various biological applications that related to gene or gene products.
|
| 19 |
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
+
### Model Sources
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
<!-- Provide the basic links for the model. -->
|
| 25 |
|
| 26 |
+
- **Repository:** https://github.com/MM-YY-WW/GoBERT
|
| 27 |
+
- **Paper [optional]:** GoBERT: Gene Ontology Graph Informed BERT for Universal Gene Function Prediction.
|
| 28 |
+
- **Demo [optional]:** https://gobert.nasy.moe/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
## How to Get Started with the Model
|
| 31 |
|
| 32 |
Use the code below to get started with the model.
|
| 33 |
|
| 34 |
+
```python
|
| 35 |
+
from transformers import AutoTokenizer, BertForPreTraining
|
| 36 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
repo_name = "MM-YY-WW/GoBERT"
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_name, use_fast=False, trust_remote_code=True)
|
| 40 |
+
model = BertForPreTraining.from_pretrained(repo_name)
|
| 41 |
|
| 42 |
+
# Obtain function-level GoBERT Embedding:
|
| 43 |
+
input_sequences = 'GO:0005739 GO:0005783 GO:0005829 GO:0006914 GO:0006915 GO:0006979 GO:0031966 GO:0051560'
|
| 44 |
+
tokenized_input = tokenizer(input_sequences)
|
| 45 |
+
input_tensor = torch.tensor(tokenized_input['input_ids']).unsqueeze(0)
|
| 46 |
+
attention_mask = torch.tensor(tokenized_input['attention_mask']).unsqueeze(0)
|
| 47 |
|
| 48 |
+
model.eval()
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
outputs = model(input_ids=input_tensor, attention_mask=attention_mask, output_hidden_states=True)
|
| 51 |
+
embedding = outputs.hidden_states[-1].squeeze(0).cpu().numpy()
|
| 52 |
+
```
|
| 53 |
|
|
|
|
| 54 |
|
|
|
|
| 55 |
|
|
|
|
| 56 |
|
| 57 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 60 |
|
| 61 |
**BibTeX:**
|
| 62 |
|
| 63 |
+
```bibtex
|
| 64 |
+
@inproceedings{miao2025gobert,
|
| 65 |
+
title={GoBERT: Gene Ontology Graph Informed BERT for Universal Gene Function Prediction},
|
| 66 |
+
author={Miao, Yuwei and Guo, Yuzhi and Ma, Hehuan and Yan, Jingquan and Jiang, Feng and Liao, Rui and Huang, Junzhou},
|
| 67 |
+
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
|
| 68 |
+
volume={39},
|
| 69 |
+
number={1},
|
| 70 |
+
pages={622--630},
|
| 71 |
+
year={2025},
|
| 72 |
+
doi={10.1609/aaai.v39i1.32043}
|
| 73 |
+
}
|
| 74 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|