--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SentimentAnalysis-IMDB results: [] --- # SentimentAnalysis-IMDB This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1775 - Accuracy: 0.9411 - F1: 0.9411 - Precision: 0.9411 - Recall: 0.9411 - Roc Auc: 0.9411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | 0.1984 | 1.0 | 1563 | 0.2196 | 0.9184 | 0.9182 | 0.9224 | 0.9184 | 0.9184 | | 0.0817 | 2.0 | 3126 | 0.1775 | 0.9411 | 0.9411 | 0.9411 | 0.9411 | 0.9411 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0