File size: 1,381 Bytes
7af88f1 3b77b7d f89604e 7af88f1 d1fd2b1 141a7e7 7af88f1 f89604e f935bae f89604e 275c4d8 7af88f1 3b77b7d 7af88f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
language:
- en # Example: fr
- ro # Example: en
license: apache-2.0 # Example: apache-2.0 or any license from https://hf.co/docs/hub/repositories-licenses
tags:
- translation
- wmt16
- Lvxue
datasets:
- wmt16 # Example: common_voice. Use dataset id from https://hf.co/datasets
metrics:
- sacrebleu
- bleu # Example: wer. Use metric id from https://hf.co/metrics
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-mt5-small-10epoch
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7274
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1
|