Update
Browse files- modeling_intern_vit.py +356 -0
- modeling_internvl_chat.py +385 -0
modeling_intern_vit.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2023 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from einops import rearrange
|
12 |
+
from timm.models.layers import DropPath
|
13 |
+
from torch import nn
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
16 |
+
BaseModelOutputWithPooling)
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
from .configuration_intern_vit import InternVisionConfig
|
21 |
+
|
22 |
+
try:
|
23 |
+
from .flash_attention import FlashAttention
|
24 |
+
has_flash_attn = True
|
25 |
+
except:
|
26 |
+
print('FlashAttention is not installed.')
|
27 |
+
has_flash_attn = False
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class InternRMSNorm(nn.Module):
|
34 |
+
def __init__(self, hidden_size, eps=1e-6):
|
35 |
+
super().__init__()
|
36 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
37 |
+
self.variance_epsilon = eps
|
38 |
+
|
39 |
+
def forward(self, hidden_states):
|
40 |
+
input_dtype = hidden_states.dtype
|
41 |
+
hidden_states = hidden_states.to(torch.float32)
|
42 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
43 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
44 |
+
return self.weight * hidden_states.to(input_dtype)
|
45 |
+
|
46 |
+
|
47 |
+
try:
|
48 |
+
from apex.normalization import FusedRMSNorm
|
49 |
+
|
50 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
51 |
+
|
52 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
53 |
+
except ImportError:
|
54 |
+
# using the normal InternRMSNorm
|
55 |
+
pass
|
56 |
+
except Exception:
|
57 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
58 |
+
pass
|
59 |
+
|
60 |
+
|
61 |
+
class InternVisionEmbeddings(nn.Module):
|
62 |
+
def __init__(self, config: InternVisionConfig):
|
63 |
+
super().__init__()
|
64 |
+
self.config = config
|
65 |
+
self.embed_dim = config.hidden_size
|
66 |
+
self.image_size = config.image_size
|
67 |
+
self.patch_size = config.patch_size
|
68 |
+
|
69 |
+
self.class_embedding = nn.Parameter(
|
70 |
+
torch.randn(1, 1, self.embed_dim),
|
71 |
+
)
|
72 |
+
|
73 |
+
self.patch_embedding = nn.Conv2d(
|
74 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
75 |
+
)
|
76 |
+
|
77 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
78 |
+
self.num_positions = self.num_patches + 1
|
79 |
+
|
80 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
81 |
+
|
82 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
83 |
+
target_dtype = pos_embed.dtype
|
84 |
+
pos_embed = pos_embed.float().reshape(
|
85 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
86 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\
|
87 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
88 |
+
return pos_embed
|
89 |
+
|
90 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
91 |
+
target_dtype = self.patch_embedding.weight.dtype
|
92 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
93 |
+
batch_size, _, height, width = patch_embeds.shape
|
94 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
95 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
96 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
97 |
+
position_embedding = torch.cat([
|
98 |
+
self.position_embedding[:, :1, :],
|
99 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
100 |
+
], dim=1)
|
101 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
102 |
+
return embeddings
|
103 |
+
|
104 |
+
|
105 |
+
class InternAttention(nn.Module):
|
106 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
107 |
+
|
108 |
+
def __init__(self, config: InternVisionConfig):
|
109 |
+
super().__init__()
|
110 |
+
self.config = config
|
111 |
+
self.embed_dim = config.hidden_size
|
112 |
+
self.num_heads = config.num_attention_heads
|
113 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
114 |
+
if config.use_flash_attn and not has_flash_attn:
|
115 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
116 |
+
self.head_dim = self.embed_dim // self.num_heads
|
117 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
118 |
+
raise ValueError(
|
119 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
120 |
+
f' {self.num_heads}).'
|
121 |
+
)
|
122 |
+
|
123 |
+
self.scale = self.head_dim ** -0.5
|
124 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
125 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
126 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
127 |
+
|
128 |
+
self.qk_normalization = config.qk_normalization
|
129 |
+
|
130 |
+
if self.qk_normalization:
|
131 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
132 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
133 |
+
|
134 |
+
if self.use_flash_attn:
|
135 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
136 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
137 |
+
|
138 |
+
def _naive_attn(self, x):
|
139 |
+
B, N, C = x.shape
|
140 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
141 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
142 |
+
|
143 |
+
if self.qk_normalization:
|
144 |
+
B_, H_, N_, D_ = q.shape
|
145 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
146 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
147 |
+
|
148 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
149 |
+
attn = attn.softmax(dim=-1)
|
150 |
+
attn = self.attn_drop(attn)
|
151 |
+
|
152 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
153 |
+
x = self.proj(x)
|
154 |
+
x = self.proj_drop(x)
|
155 |
+
return x
|
156 |
+
|
157 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
158 |
+
qkv = self.qkv(x)
|
159 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
160 |
+
|
161 |
+
if self.qk_normalization:
|
162 |
+
q, k, v = qkv.unbind(2)
|
163 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
164 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
165 |
+
qkv = torch.stack([q, k, v], dim=2)
|
166 |
+
|
167 |
+
context, _ = self.inner_attn(
|
168 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
169 |
+
)
|
170 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
171 |
+
outs = self.proj_drop(outs)
|
172 |
+
return outs
|
173 |
+
|
174 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
175 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
176 |
+
return x
|
177 |
+
|
178 |
+
|
179 |
+
class InternMLP(nn.Module):
|
180 |
+
def __init__(self, config: InternVisionConfig):
|
181 |
+
super().__init__()
|
182 |
+
self.config = config
|
183 |
+
self.act = ACT2FN[config.hidden_act]
|
184 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
185 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
186 |
+
|
187 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
188 |
+
hidden_states = self.fc1(hidden_states)
|
189 |
+
hidden_states = self.act(hidden_states)
|
190 |
+
hidden_states = self.fc2(hidden_states)
|
191 |
+
return hidden_states
|
192 |
+
|
193 |
+
|
194 |
+
class InternVisionEncoderLayer(nn.Module):
|
195 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
196 |
+
super().__init__()
|
197 |
+
self.embed_dim = config.hidden_size
|
198 |
+
self.intermediate_size = config.intermediate_size
|
199 |
+
|
200 |
+
self.attn = InternAttention(config)
|
201 |
+
self.mlp = InternMLP(config)
|
202 |
+
self.norm1 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
203 |
+
self.norm2 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
204 |
+
|
205 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
206 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
207 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
208 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
209 |
+
|
210 |
+
def forward(
|
211 |
+
self,
|
212 |
+
hidden_states: torch.Tensor,
|
213 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
214 |
+
"""
|
215 |
+
Args:
|
216 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
217 |
+
"""
|
218 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
219 |
+
|
220 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
221 |
+
|
222 |
+
return hidden_states
|
223 |
+
|
224 |
+
|
225 |
+
class InternVisionEncoder(nn.Module):
|
226 |
+
"""
|
227 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
228 |
+
[`InternEncoderLayer`].
|
229 |
+
|
230 |
+
Args:
|
231 |
+
config (`InternConfig`):
|
232 |
+
The corresponding vision configuration for the `InternEncoder`.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(self, config: InternVisionConfig):
|
236 |
+
super().__init__()
|
237 |
+
self.config = config
|
238 |
+
# stochastic depth decay rule
|
239 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
240 |
+
self.layers = nn.ModuleList([
|
241 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
242 |
+
self.gradient_checkpointing = True
|
243 |
+
|
244 |
+
def forward(
|
245 |
+
self,
|
246 |
+
inputs_embeds,
|
247 |
+
output_hidden_states: Optional[bool] = None,
|
248 |
+
return_dict: Optional[bool] = None,
|
249 |
+
) -> Union[Tuple, BaseModelOutput]:
|
250 |
+
r"""
|
251 |
+
Args:
|
252 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
253 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
254 |
+
output_hidden_states (`bool`, *optional*):
|
255 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
256 |
+
for more detail.
|
257 |
+
return_dict (`bool`, *optional*):
|
258 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
259 |
+
"""
|
260 |
+
output_hidden_states = (
|
261 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
262 |
+
)
|
263 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
264 |
+
|
265 |
+
encoder_states = () if output_hidden_states else None
|
266 |
+
hidden_states = inputs_embeds
|
267 |
+
|
268 |
+
for idx, encoder_layer in enumerate(self.layers):
|
269 |
+
if output_hidden_states:
|
270 |
+
encoder_states = encoder_states + (hidden_states,)
|
271 |
+
if self.gradient_checkpointing and self.training:
|
272 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
273 |
+
encoder_layer,
|
274 |
+
hidden_states)
|
275 |
+
else:
|
276 |
+
layer_outputs = encoder_layer(
|
277 |
+
hidden_states,
|
278 |
+
)
|
279 |
+
hidden_states = layer_outputs
|
280 |
+
|
281 |
+
if output_hidden_states:
|
282 |
+
encoder_states = encoder_states + (hidden_states,)
|
283 |
+
|
284 |
+
if not return_dict:
|
285 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
286 |
+
return BaseModelOutput(
|
287 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
288 |
+
)
|
289 |
+
|
290 |
+
|
291 |
+
class InternVisionModel(PreTrainedModel):
|
292 |
+
main_input_name = 'pixel_values'
|
293 |
+
config_class = InternVisionConfig
|
294 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
295 |
+
|
296 |
+
def __init__(self, config: InternVisionConfig):
|
297 |
+
super().__init__(config)
|
298 |
+
self.config = config
|
299 |
+
|
300 |
+
self.embeddings = InternVisionEmbeddings(config)
|
301 |
+
self.encoder = InternVisionEncoder(config)
|
302 |
+
|
303 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
304 |
+
pos_emb = self.embeddings.position_embedding
|
305 |
+
_, num_positions, embed_dim = pos_emb.shape
|
306 |
+
cls_emb = pos_emb[:, :1, :]
|
307 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
308 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
309 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
310 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
311 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
312 |
+
self.embeddings.image_size = new_size
|
313 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
314 |
+
|
315 |
+
def get_input_embeddings(self):
|
316 |
+
return self.embeddings
|
317 |
+
|
318 |
+
def forward(
|
319 |
+
self,
|
320 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
321 |
+
output_hidden_states: Optional[bool] = None,
|
322 |
+
return_dict: Optional[bool] = None,
|
323 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
324 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
325 |
+
output_hidden_states = (
|
326 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
327 |
+
)
|
328 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
329 |
+
|
330 |
+
if pixel_values is None and pixel_embeds is None:
|
331 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
332 |
+
|
333 |
+
if pixel_embeds is not None:
|
334 |
+
hidden_states = pixel_embeds
|
335 |
+
else:
|
336 |
+
if len(pixel_values.shape) == 4:
|
337 |
+
hidden_states = self.embeddings(pixel_values)
|
338 |
+
else:
|
339 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
340 |
+
encoder_outputs = self.encoder(
|
341 |
+
inputs_embeds=hidden_states,
|
342 |
+
output_hidden_states=output_hidden_states,
|
343 |
+
return_dict=return_dict,
|
344 |
+
)
|
345 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
346 |
+
pooled_output = last_hidden_state[:, 0, :]
|
347 |
+
|
348 |
+
if not return_dict:
|
349 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
350 |
+
|
351 |
+
return BaseModelOutputWithPooling(
|
352 |
+
last_hidden_state=last_hidden_state,
|
353 |
+
pooler_output=pooled_output,
|
354 |
+
hidden_states=encoder_outputs.hidden_states,
|
355 |
+
attentions=encoder_outputs.attentions,
|
356 |
+
)
|
modeling_internvl_chat.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2023 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
import warnings
|
7 |
+
from typing import Any, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
|
11 |
+
from peft import LoraConfig, get_peft_model
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import CrossEntropyLoss
|
14 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
15 |
+
LlamaTokenizer)
|
16 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import ModelOutput, logging
|
19 |
+
|
20 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
21 |
+
from .modeling_intern_vit import InternVisionModel
|
22 |
+
import pdb
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
class InternVLChatModel(PreTrainedModel):
|
28 |
+
config_class = InternVLChatConfig
|
29 |
+
main_input_name = 'pixel_values'
|
30 |
+
_no_split_modules = ['InternVisionEncoderLayer', 'LlamaDecoderLayer']
|
31 |
+
|
32 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
|
33 |
+
super().__init__(config)
|
34 |
+
|
35 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
36 |
+
patch_size = config.vision_config.patch_size
|
37 |
+
self.patch_size = patch_size
|
38 |
+
self.select_layer = config.select_layer
|
39 |
+
self.template = config.template
|
40 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
41 |
+
self.downsample_ratio = config.downsample_ratio
|
42 |
+
self.ps_version = config.ps_version
|
43 |
+
|
44 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
45 |
+
logger.info(f'ps_version: {self.ps_version}')
|
46 |
+
if vision_model is not None:
|
47 |
+
self.vision_model = vision_model
|
48 |
+
else:
|
49 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
50 |
+
if language_model is not None:
|
51 |
+
self.language_model = language_model
|
52 |
+
else:
|
53 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
54 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
55 |
+
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
|
56 |
+
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
57 |
+
else:
|
58 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
59 |
+
|
60 |
+
vit_hidden_size = config.vision_config.hidden_size
|
61 |
+
llm_hidden_size = config.llm_config.hidden_size
|
62 |
+
|
63 |
+
self.mlp1 = nn.Sequential(
|
64 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
65 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
66 |
+
nn.GELU(),
|
67 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
68 |
+
)
|
69 |
+
|
70 |
+
# if config.force_image_size != config.vision_config.image_size:
|
71 |
+
# self.vision_model.resize_pos_embeddings(
|
72 |
+
# old_size=config.vision_config.image_size,
|
73 |
+
# new_size=config.force_image_size,
|
74 |
+
# patch_size=config.vision_config.patch_size
|
75 |
+
# )
|
76 |
+
|
77 |
+
self.img_context_token_id = None
|
78 |
+
self.neftune_alpha = None
|
79 |
+
|
80 |
+
if config.use_backbone_lora:
|
81 |
+
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
|
82 |
+
|
83 |
+
if config.use_llm_lora:
|
84 |
+
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
|
85 |
+
|
86 |
+
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
87 |
+
lora_config = LoraConfig(
|
88 |
+
r=r,
|
89 |
+
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
|
90 |
+
lora_alpha=lora_alpha,
|
91 |
+
lora_dropout=lora_dropout,
|
92 |
+
)
|
93 |
+
self.vision_model = get_peft_model(self.vision_model, lora_config)
|
94 |
+
self.vision_model.print_trainable_parameters()
|
95 |
+
|
96 |
+
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
97 |
+
lora_config = LoraConfig(
|
98 |
+
r=r,
|
99 |
+
target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
|
100 |
+
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
|
101 |
+
lora_alpha=lora_alpha,
|
102 |
+
lora_dropout=lora_dropout,
|
103 |
+
task_type='CAUSAL_LM'
|
104 |
+
)
|
105 |
+
self.language_model = get_peft_model(self.language_model, lora_config)
|
106 |
+
self.language_model.enable_input_require_grads()
|
107 |
+
self.language_model.print_trainable_parameters()
|
108 |
+
|
109 |
+
def forward(
|
110 |
+
self,
|
111 |
+
pixel_values: torch.FloatTensor,
|
112 |
+
input_ids: torch.LongTensor = None,
|
113 |
+
attention_mask: Optional[torch.Tensor] = None,
|
114 |
+
position_ids: Optional[torch.LongTensor] = None,
|
115 |
+
image_flags: Optional[torch.LongTensor] = None,
|
116 |
+
loss_reweight: Optional[torch.LongTensor] = None,
|
117 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
118 |
+
labels: Optional[torch.LongTensor] = None,
|
119 |
+
use_cache: Optional[bool] = None,
|
120 |
+
output_attentions: Optional[bool] = None,
|
121 |
+
output_hidden_states: Optional[bool] = None,
|
122 |
+
return_dict: Optional[bool] = None,
|
123 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
124 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
125 |
+
|
126 |
+
image_flags = image_flags.squeeze(-1)
|
127 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
128 |
+
|
129 |
+
vit_embeds = self.extract_feature(pixel_values)
|
130 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
131 |
+
vit_batch_size = pixel_values.shape[0]
|
132 |
+
|
133 |
+
B, N, C = input_embeds.shape
|
134 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
135 |
+
|
136 |
+
# if torch.distributed.get_rank() == 0:
|
137 |
+
# print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
138 |
+
|
139 |
+
input_ids = input_ids.reshape(B * N)
|
140 |
+
selected = (input_ids == self.img_context_token_id)
|
141 |
+
|
142 |
+
try:
|
143 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
144 |
+
except Exception as e:
|
145 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
146 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
147 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
148 |
+
n_token = selected.sum()
|
149 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
150 |
+
|
151 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
152 |
+
|
153 |
+
outputs = self.language_model(
|
154 |
+
inputs_embeds=input_embeds,
|
155 |
+
attention_mask=attention_mask,
|
156 |
+
position_ids=position_ids,
|
157 |
+
past_key_values=past_key_values,
|
158 |
+
use_cache=use_cache,
|
159 |
+
output_attentions=output_attentions,
|
160 |
+
output_hidden_states=output_hidden_states,
|
161 |
+
return_dict=return_dict,
|
162 |
+
)
|
163 |
+
logits = outputs.logits
|
164 |
+
|
165 |
+
loss = None
|
166 |
+
if labels is not None:
|
167 |
+
# Shift so that tokens < n predict n
|
168 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
169 |
+
shift_labels = labels[..., 1:].contiguous()
|
170 |
+
# shift_loss_reweights = loss_reweight[..., 1:].contiguous()
|
171 |
+
# Flatten the tokens
|
172 |
+
loss_fct = CrossEntropyLoss()
|
173 |
+
# loss_fct_reg = CrossEntropyLoss(reduction='none')
|
174 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
175 |
+
shift_labels = shift_labels.view(-1)
|
176 |
+
# shift_loss_reweights = shift_loss_reweights.view(-1)
|
177 |
+
# Enable model parallelism
|
178 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
179 |
+
# shift_loss_reweights = shift_loss_reweights.to(shift_logits.device)
|
180 |
+
loss = loss_fct(shift_logits, shift_labels)
|
181 |
+
# loss = loss_fct_reg(shift_logits, shift_labels)
|
182 |
+
# loss = torch.sum(shift_loss_reweights * loss) / torch.sum(shift_loss_reweights)
|
183 |
+
|
184 |
+
if not return_dict:
|
185 |
+
output = (logits,) + outputs[1:]
|
186 |
+
return (loss,) + output if loss is not None else output
|
187 |
+
|
188 |
+
return CausalLMOutputWithPast(
|
189 |
+
loss=loss,
|
190 |
+
logits=logits,
|
191 |
+
past_key_values=outputs.past_key_values,
|
192 |
+
hidden_states=outputs.hidden_states,
|
193 |
+
attentions=outputs.attentions,
|
194 |
+
)
|
195 |
+
|
196 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
197 |
+
n, w, h, c = x.size()
|
198 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
199 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
200 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
201 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
202 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
203 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
204 |
+
int(c / (scale_factor * scale_factor)))
|
205 |
+
if self.ps_version == 'v1':
|
206 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
207 |
+
'which results in a transposed image.')
|
208 |
+
else:
|
209 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
210 |
+
return x
|
211 |
+
|
212 |
+
def noised_embed(self, vit_embeds, noise_alpha=5):
|
213 |
+
dims = torch.tensor(vit_embeds.size(1) * vit_embeds.size(2))
|
214 |
+
mag_norm = noise_alpha / torch.sqrt(dims)
|
215 |
+
noise = torch.zeros_like(vit_embeds).uniform_(-mag_norm, mag_norm)
|
216 |
+
return vit_embeds + noise
|
217 |
+
|
218 |
+
def extract_feature(self, pixel_values):
|
219 |
+
if self.select_layer == -1:
|
220 |
+
vit_embeds = self.vision_model(
|
221 |
+
pixel_values=pixel_values,
|
222 |
+
output_hidden_states=False,
|
223 |
+
return_dict=True).last_hidden_state
|
224 |
+
else:
|
225 |
+
vit_embeds = self.vision_model(
|
226 |
+
pixel_values=pixel_values,
|
227 |
+
output_hidden_states=True,
|
228 |
+
return_dict=True).hidden_states[self.select_layer]
|
229 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
230 |
+
|
231 |
+
if self.training and self.neftune_alpha is not None:
|
232 |
+
vit_embeds = self.noised_embed(vit_embeds, self.neftune_alpha)
|
233 |
+
|
234 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
235 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
236 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
237 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
238 |
+
vit_embeds = self.mlp1(vit_embeds)#.to(pixel_values.device)
|
239 |
+
return vit_embeds
|
240 |
+
|
241 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
242 |
+
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'):
|
243 |
+
|
244 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
245 |
+
self.img_context_token_id = img_context_token_id
|
246 |
+
if tokenizer.convert_tokens_to_ids('<|im_end|>') != 0:
|
247 |
+
eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>') # 92542, InternLM2
|
248 |
+
else:
|
249 |
+
eos_token_id = tokenizer.eos_token_id
|
250 |
+
from internvl.conversation import get_conv_template
|
251 |
+
template = get_conv_template(self.template)
|
252 |
+
if pixel_values is not None:
|
253 |
+
image_bs = pixel_values.shape[0]
|
254 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
255 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_bs + IMG_END_TOKEN
|
256 |
+
# question = image_tokens + '\n' + question
|
257 |
+
question = question.replace('<image>', image_tokens)
|
258 |
+
|
259 |
+
if history is None:
|
260 |
+
history = []
|
261 |
+
else:
|
262 |
+
for (old_question, old_answer) in history:
|
263 |
+
template.append_message(template.roles[0], old_question)
|
264 |
+
template.append_message(template.roles[1], old_answer)
|
265 |
+
|
266 |
+
template.append_message(template.roles[0], question)
|
267 |
+
template.append_message(template.roles[1], None)
|
268 |
+
query = template.get_prompt()
|
269 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
270 |
+
input_ids = model_inputs['input_ids'].cuda()
|
271 |
+
attention_mask = model_inputs['attention_mask'].cuda()
|
272 |
+
generation_config['eos_token_id'] = eos_token_id
|
273 |
+
generation_output = self.generate(
|
274 |
+
pixel_values=pixel_values,
|
275 |
+
input_ids=input_ids,
|
276 |
+
attention_mask=attention_mask,
|
277 |
+
**generation_config
|
278 |
+
)
|
279 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
280 |
+
response = response.split('<|im_end|>')[0].strip() # for InternLM2
|
281 |
+
history.append((question, response))
|
282 |
+
if return_history:
|
283 |
+
return response, history
|
284 |
+
else:
|
285 |
+
# query_to_print = query.replace(image_tokens, '<image>')
|
286 |
+
# print(query_to_print, response)
|
287 |
+
return response
|
288 |
+
return response
|
289 |
+
|
290 |
+
def multi_image_chat(self, tokenizer, pixel_values, image_counts, question, generation_config, history=None,
|
291 |
+
return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'):
|
292 |
+
|
293 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
294 |
+
self.img_context_token_id = img_context_token_id
|
295 |
+
if tokenizer.convert_tokens_to_ids('<|im_end|>') != 0:
|
296 |
+
eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>') # 92542, InternLM2
|
297 |
+
else:
|
298 |
+
eos_token_id = tokenizer.eos_token_id
|
299 |
+
|
300 |
+
from internvl.conversation import get_conv_template
|
301 |
+
|
302 |
+
template = get_conv_template(self.template)
|
303 |
+
|
304 |
+
if history is None:
|
305 |
+
history = []
|
306 |
+
image_tokens = ''
|
307 |
+
image_bs = pixel_values.shape[0]
|
308 |
+
print(f'dynamic ViT batch size: {image_bs}, image_counts: {image_counts}')
|
309 |
+
for idx, image_count in enumerate(image_counts):
|
310 |
+
image_tokens += f'<image {idx+1}> (图{idx+1}):' + IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_count + IMG_END_TOKEN
|
311 |
+
question = image_tokens + '\n' + question
|
312 |
+
else:
|
313 |
+
for (old_question, old_answer) in history:
|
314 |
+
template.append_message(template.roles[0], old_question)
|
315 |
+
template.append_message(template.roles[1], old_answer)
|
316 |
+
template.append_message(template.roles[0], question)
|
317 |
+
template.append_message(template.roles[1], None)
|
318 |
+
query = template.get_prompt()
|
319 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
320 |
+
input_ids = model_inputs['input_ids'].cuda()
|
321 |
+
attention_mask = model_inputs['attention_mask'].cuda()
|
322 |
+
generation_config['eos_token_id'] = eos_token_id
|
323 |
+
|
324 |
+
generation_output = self.generate(
|
325 |
+
pixel_values=pixel_values,
|
326 |
+
input_ids=input_ids,
|
327 |
+
attention_mask=attention_mask,
|
328 |
+
**generation_config
|
329 |
+
)
|
330 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
331 |
+
response = response.split('<|im_end|>')[0].strip() # for InternLM2
|
332 |
+
history.append((question, response))
|
333 |
+
if return_history:
|
334 |
+
return response, history
|
335 |
+
else:
|
336 |
+
query_to_print = query.replace(image_tokens, '<image>')
|
337 |
+
print(query_to_print, response)
|
338 |
+
return response
|
339 |
+
return response
|
340 |
+
|
341 |
+
@torch.no_grad()
|
342 |
+
def generate(
|
343 |
+
self,
|
344 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
345 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
346 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
347 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
348 |
+
generation_config: Optional[GenerationConfig] = None,
|
349 |
+
output_hidden_states: Optional[bool] = None,
|
350 |
+
return_dict: Optional[bool] = None,
|
351 |
+
**generate_kwargs,
|
352 |
+
) -> torch.LongTensor:
|
353 |
+
|
354 |
+
assert self.img_context_token_id is not None
|
355 |
+
if pixel_values is not None:
|
356 |
+
if visual_features is not None:
|
357 |
+
vit_embeds = visual_features
|
358 |
+
else:
|
359 |
+
vit_embeds = self.extract_feature(pixel_values)
|
360 |
+
|
361 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
362 |
+
B, N, C = input_embeds.shape
|
363 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
364 |
+
|
365 |
+
input_ids = input_ids.reshape(B * N)
|
366 |
+
selected = (input_ids == self.img_context_token_id)
|
367 |
+
assert selected.sum() != 0
|
368 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
369 |
+
|
370 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
371 |
+
else:
|
372 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
373 |
+
|
374 |
+
outputs = self.language_model.generate(
|
375 |
+
inputs_embeds=input_embeds,
|
376 |
+
attention_mask=attention_mask,
|
377 |
+
generation_config=generation_config,
|
378 |
+
output_hidden_states=output_hidden_states,
|
379 |
+
return_dict=return_dict,
|
380 |
+
use_cache=True,
|
381 |
+
**generate_kwargs,
|
382 |
+
)
|
383 |
+
|
384 |
+
return outputs
|
385 |
+
|