|
from torchvision import datasets, transforms |
|
from torch.utils.data import DataLoader |
|
|
|
|
|
def load_mnist(): |
|
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) |
|
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) |
|
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) |
|
|
|
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) |
|
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) |
|
|
|
return {'train': train_loader, 'test': test_loader} |
|
|