End of training
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: EuroBERT/EuroBERT-210m
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: eurobert210m_Eau_v2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# eurobert210m_Eau_v2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [EuroBERT/EuroBERT-210m](https://huggingface.co/EuroBERT/EuroBERT-210m) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0680
|
23 |
+
- Accuracy: 0.9584
|
24 |
+
- F1: 0.9595
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 100
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
56 |
+
| 1.4372 | 1.0 | 67 | 0.9689 | 0.6322 | 0.5664 |
|
57 |
+
| 0.8205 | 2.0 | 134 | 0.6235 | 0.8213 | 0.8222 |
|
58 |
+
| 0.4899 | 3.0 | 201 | 0.4782 | 0.8326 | 0.8367 |
|
59 |
+
| 0.3598 | 4.0 | 268 | 0.2252 | 0.9196 | 0.9200 |
|
60 |
+
| 0.2854 | 5.0 | 335 | 0.2137 | 0.9258 | 0.9265 |
|
61 |
+
| 0.2054 | 6.0 | 402 | 0.1284 | 0.9452 | 0.9443 |
|
62 |
+
| 0.1735 | 7.0 | 469 | 0.1984 | 0.9296 | 0.9303 |
|
63 |
+
| 0.1763 | 8.0 | 536 | 0.1177 | 0.9409 | 0.9379 |
|
64 |
+
| 0.1601 | 9.0 | 603 | 0.1133 | 0.9485 | 0.9462 |
|
65 |
+
| 0.1206 | 10.0 | 670 | 0.1219 | 0.9461 | 0.9448 |
|
66 |
+
| 0.1269 | 11.0 | 737 | 0.0756 | 0.9565 | 0.9575 |
|
67 |
+
| 0.1238 | 12.0 | 804 | 0.1025 | 0.9522 | 0.9539 |
|
68 |
+
| 0.0969 | 13.0 | 871 | 0.0823 | 0.9570 | 0.9580 |
|
69 |
+
| 0.1046 | 14.0 | 938 | 0.0802 | 0.9527 | 0.9513 |
|
70 |
+
| 0.1101 | 15.0 | 1005 | 0.0797 | 0.9546 | 0.9539 |
|
71 |
+
| 0.0864 | 16.0 | 1072 | 0.0853 | 0.9565 | 0.9550 |
|
72 |
+
| 0.1002 | 17.0 | 1139 | 0.0696 | 0.9579 | 0.9582 |
|
73 |
+
| 0.0794 | 18.0 | 1206 | 0.0774 | 0.9579 | 0.9588 |
|
74 |
+
| 0.0849 | 19.0 | 1273 | 0.0719 | 0.9546 | 0.9529 |
|
75 |
+
| 0.0867 | 20.0 | 1340 | 0.0723 | 0.9589 | 0.9575 |
|
76 |
+
| 0.0952 | 21.0 | 1407 | 0.0680 | 0.9584 | 0.9595 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.48.3
|
82 |
+
- Pytorch 2.5.1+cu124
|
83 |
+
- Datasets 3.3.2
|
84 |
+
- Tokenizers 0.21.0
|