Ludo33 commited on
Commit
0cc13ab
·
verified ·
1 Parent(s): a918a1f

End of training

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: EuroBERT/EuroBERT-210m
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: eurobert210m_Eau_v2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # eurobert210m_Eau_v2
19
+
20
+ This model is a fine-tuned version of [EuroBERT/EuroBERT-210m](https://huggingface.co/EuroBERT/EuroBERT-210m) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0680
23
+ - Accuracy: 0.9584
24
+ - F1: 0.9595
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 5e-05
44
+ - train_batch_size: 32
45
+ - eval_batch_size: 32
46
+ - seed: 42
47
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 100
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
56
+ | 1.4372 | 1.0 | 67 | 0.9689 | 0.6322 | 0.5664 |
57
+ | 0.8205 | 2.0 | 134 | 0.6235 | 0.8213 | 0.8222 |
58
+ | 0.4899 | 3.0 | 201 | 0.4782 | 0.8326 | 0.8367 |
59
+ | 0.3598 | 4.0 | 268 | 0.2252 | 0.9196 | 0.9200 |
60
+ | 0.2854 | 5.0 | 335 | 0.2137 | 0.9258 | 0.9265 |
61
+ | 0.2054 | 6.0 | 402 | 0.1284 | 0.9452 | 0.9443 |
62
+ | 0.1735 | 7.0 | 469 | 0.1984 | 0.9296 | 0.9303 |
63
+ | 0.1763 | 8.0 | 536 | 0.1177 | 0.9409 | 0.9379 |
64
+ | 0.1601 | 9.0 | 603 | 0.1133 | 0.9485 | 0.9462 |
65
+ | 0.1206 | 10.0 | 670 | 0.1219 | 0.9461 | 0.9448 |
66
+ | 0.1269 | 11.0 | 737 | 0.0756 | 0.9565 | 0.9575 |
67
+ | 0.1238 | 12.0 | 804 | 0.1025 | 0.9522 | 0.9539 |
68
+ | 0.0969 | 13.0 | 871 | 0.0823 | 0.9570 | 0.9580 |
69
+ | 0.1046 | 14.0 | 938 | 0.0802 | 0.9527 | 0.9513 |
70
+ | 0.1101 | 15.0 | 1005 | 0.0797 | 0.9546 | 0.9539 |
71
+ | 0.0864 | 16.0 | 1072 | 0.0853 | 0.9565 | 0.9550 |
72
+ | 0.1002 | 17.0 | 1139 | 0.0696 | 0.9579 | 0.9582 |
73
+ | 0.0794 | 18.0 | 1206 | 0.0774 | 0.9579 | 0.9588 |
74
+ | 0.0849 | 19.0 | 1273 | 0.0719 | 0.9546 | 0.9529 |
75
+ | 0.0867 | 20.0 | 1340 | 0.0723 | 0.9589 | 0.9575 |
76
+ | 0.0952 | 21.0 | 1407 | 0.0680 | 0.9584 | 0.9595 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.48.3
82
+ - Pytorch 2.5.1+cu124
83
+ - Datasets 3.3.2
84
+ - Tokenizers 0.21.0