--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta_biodiversite results: [] --- # deberta_biodiversite This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0237 - Accuracy: 0.9926 - F1: 0.9927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.2788 | 1.0 | 128 | 0.6534 | 0.7828 | 0.7762 | | 0.5887 | 2.0 | 256 | 0.3681 | 0.8926 | 0.8884 | | 0.4035 | 3.0 | 384 | 0.2719 | 0.9142 | 0.9123 | | 0.2674 | 4.0 | 512 | 0.1562 | 0.9564 | 0.9563 | | 0.2189 | 5.0 | 640 | 0.1438 | 0.9613 | 0.9610 | | 0.152 | 6.0 | 768 | 0.1300 | 0.9701 | 0.9701 | | 0.1403 | 7.0 | 896 | 0.0879 | 0.9794 | 0.9792 | | 0.1072 | 8.0 | 1024 | 0.0673 | 0.9873 | 0.9872 | | 0.1236 | 9.0 | 1152 | 0.0499 | 0.9887 | 0.9887 | | 0.0803 | 10.0 | 1280 | 0.0490 | 0.9907 | 0.9907 | | 0.0746 | 11.0 | 1408 | 0.0501 | 0.9912 | 0.9912 | | 0.0568 | 12.0 | 1536 | 0.0314 | 0.9912 | 0.9912 | | 0.0397 | 13.0 | 1664 | 0.0285 | 0.9917 | 0.9916 | | 0.0445 | 14.0 | 1792 | 0.0204 | 0.9926 | 0.9927 | | 0.0479 | 15.0 | 1920 | 0.0250 | 0.9922 | 0.9922 | | 0.0363 | 16.0 | 2048 | 0.0244 | 0.9922 | 0.9922 | | 0.0343 | 17.0 | 2176 | 0.0237 | 0.9926 | 0.9927 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0