Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
tags:
|
| 7 |
+
- quantization
|
| 8 |
+
- lora
|
| 9 |
+
- loftq
|
| 10 |
+
- llama
|
| 11 |
+
---
|
| 12 |
+
# LoftQ Initialization
|
| 13 |
+
|
| 14 |
+
| [Paper](https://arxiv.org/abs/2310.08659) | [Code](https://github.com/yxli2123/LoftQ) | [PEFT Example](https://github.com/huggingface/peft/tree/main/examples/loftq_finetuning) |
|
| 15 |
+
|
| 16 |
+
LoftQ (LoRA-fine-tuning-aware Quantization) provides a quantized backbone Q and LoRA adapters A and B, given a full-precision pre-trained weight W.
|
| 17 |
+
|
| 18 |
+
This model, `CodeLlama-7b-hf-4bit-64rank`, is obtained from [CodeLLAMA-7b](https://huggingface.co/meta-llama/CodeLlama-7b-hf).
|
| 19 |
+
The backbone is under `LoftQ/CodeLlama-7b-hf-4bit-64rank` and LoRA adapters are under the `subfolder='loftq_init'`.
|
| 20 |
+
|
| 21 |
+
## Model Info
|
| 22 |
+
### Backbone
|
| 23 |
+
- Stored format: `torch.bfloat16`
|
| 24 |
+
- Size: ~ 14 GiB
|
| 25 |
+
- Loaded format: bitsandbytes nf4
|
| 26 |
+
- Size loaded on GPU: ~3.5 GiB
|
| 27 |
+
|
| 28 |
+
### LoRA adapters
|
| 29 |
+
- rank: 64
|
| 30 |
+
- lora_alpha: 16
|
| 31 |
+
- target_modules: ["down_proj", "up_proj", "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj"]
|
| 32 |
+
|
| 33 |
+
## Usage
|
| 34 |
+
|
| 35 |
+
**Training.** Here's an example of loading this model and preparing for the LoRA fine-tuning.
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
import torch
|
| 39 |
+
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
| 40 |
+
from peft import PeftModel
|
| 41 |
+
|
| 42 |
+
MODEL_ID = "LoftQ/CodeLlama-7b-hf-4bit-64rank"
|
| 43 |
+
|
| 44 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 45 |
+
MODEL_ID,
|
| 46 |
+
torch_dtype=torch.bfloat16, # you may change it with different models
|
| 47 |
+
quantization_config=BitsAndBytesConfig(
|
| 48 |
+
load_in_4bit=True,
|
| 49 |
+
bnb_4bit_compute_dtype=torch.bfloat16, # bfloat16 is recommended
|
| 50 |
+
bnb_4bit_use_double_quant=False,
|
| 51 |
+
bnb_4bit_quant_type='nf4',
|
| 52 |
+
),
|
| 53 |
+
)
|
| 54 |
+
peft_model = PeftModel.from_pretrained(
|
| 55 |
+
base_model,
|
| 56 |
+
MODEL_ID,
|
| 57 |
+
subfolder="loftq_init",
|
| 58 |
+
is_trainable=True,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Do training with peft_model ...
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
**Inference.** Here is an example code for inference after the model has been fine-tuned on [GSM8K](https://huggingface.co/datasets/gsm8k).
|
| 65 |
+
|
| 66 |
+
```python
|
| 67 |
+
import torch
|
| 68 |
+
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
| 69 |
+
from peft import PeftModel
|
| 70 |
+
|
| 71 |
+
MODEL_ID = "LoftQ/CodeLlama-7b-hf-4bit-64rank"
|
| 72 |
+
|
| 73 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 74 |
+
MODEL_ID,
|
| 75 |
+
torch_dtype=torch.bfloat16, # you may change it with different models
|
| 76 |
+
quantization_config=BitsAndBytesConfig(
|
| 77 |
+
load_in_4bit=True,
|
| 78 |
+
bnb_4bit_compute_dtype=torch.bfloat16, # bfloat16 is recommended
|
| 79 |
+
bnb_4bit_use_double_quant=False,
|
| 80 |
+
bnb_4bit_quant_type='nf4',
|
| 81 |
+
),
|
| 82 |
+
)
|
| 83 |
+
peft_model = PeftModel.from_pretrained(
|
| 84 |
+
base_model,
|
| 85 |
+
MODEL_ID,
|
| 86 |
+
subfolder="gsm8k",
|
| 87 |
+
is_trainable=True,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Do inference with peft_model ...
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
See the full code at our [Github Repo]((https://github.com/yxli2123/LoftQ))
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
## Citation
|
| 97 |
+
|
| 98 |
+
```bibtex
|
| 99 |
+
@article{li2023loftq,
|
| 100 |
+
title={Loftq: Lora-fine-tuning-aware quantization for large language models},
|
| 101 |
+
author={Li, Yixiao and Yu, Yifan and Liang, Chen and He, Pengcheng and Karampatziakis, Nikos and Chen, Weizhu and Zhao, Tuo},
|
| 102 |
+
journal={arXiv preprint arXiv:2310.08659},
|
| 103 |
+
year={2023}
|
| 104 |
+
}
|
| 105 |
+
```
|