--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0503HMA5H results: [] --- # V0503HMA5H This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7787 | 0.09 | 10 | 0.1611 | | 0.1597 | 0.18 | 20 | 0.1230 | | 0.1177 | 0.27 | 30 | 0.1023 | | 0.1021 | 0.36 | 40 | 0.0896 | | 0.085 | 0.45 | 50 | 0.0808 | | 0.0884 | 0.54 | 60 | 0.0808 | | 0.0855 | 0.63 | 70 | 0.0706 | | 0.0789 | 0.73 | 80 | 0.0902 | | 0.087 | 0.82 | 90 | 0.0869 | | 0.1125 | 0.91 | 100 | 8.7126 | | 2.2018 | 1.0 | 110 | 0.4319 | | 0.2705 | 1.09 | 120 | 0.2003 | | 0.759 | 1.18 | 130 | 0.2586 | | 0.2778 | 1.27 | 140 | 0.1786 | | 0.191 | 1.36 | 150 | 0.2223 | | 0.177 | 1.45 | 160 | 0.1639 | | 0.1691 | 1.54 | 170 | 0.1591 | | 0.16 | 1.63 | 180 | 0.1638 | | 0.1535 | 1.72 | 190 | 0.1508 | | 0.1501 | 1.81 | 200 | 0.1572 | | 0.1549 | 1.9 | 210 | 0.1487 | | 0.1523 | 1.99 | 220 | 0.1505 | | 0.1538 | 2.08 | 230 | 0.1558 | | 0.1493 | 2.18 | 240 | 0.1474 | | 0.1438 | 2.27 | 250 | 0.1439 | | 0.1455 | 2.36 | 260 | 0.1425 | | 0.1406 | 2.45 | 270 | 0.1433 | | 0.1402 | 2.54 | 280 | 0.1382 | | 0.1371 | 2.63 | 290 | 0.1385 | | 0.138 | 2.72 | 300 | 0.1355 | | 0.1352 | 2.81 | 310 | 0.1354 | | 0.1366 | 2.9 | 320 | 0.1347 | | 0.1368 | 2.99 | 330 | 0.1346 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1