--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0503HMA16H results: [] --- # V0503HMA16H This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9481 | 0.09 | 10 | 0.6327 | | 0.277 | 0.18 | 20 | 0.1138 | | 0.1172 | 0.27 | 30 | 0.0926 | | 0.0976 | 0.36 | 40 | 0.0808 | | 0.0822 | 0.45 | 50 | 0.0722 | | 0.0858 | 0.54 | 60 | 0.0703 | | 0.0762 | 0.63 | 70 | 0.0685 | | 0.0743 | 0.73 | 80 | 0.0798 | | 0.0868 | 0.82 | 90 | 0.0676 | | 0.0894 | 0.91 | 100 | 0.0750 | | 0.0916 | 1.0 | 110 | 0.0740 | | 0.0675 | 1.09 | 120 | 0.0908 | | 0.0772 | 1.18 | 130 | 0.0846 | | 0.0702 | 1.27 | 140 | 0.0765 | | 0.0689 | 1.36 | 150 | 0.0718 | | 0.0718 | 1.45 | 160 | 0.0746 | | 0.0668 | 1.54 | 170 | 0.0629 | | 0.0696 | 1.63 | 180 | 0.0693 | | 0.0698 | 1.72 | 190 | 0.0690 | | 0.0665 | 1.81 | 200 | 0.0678 | | 0.0589 | 1.9 | 210 | 0.0709 | | 0.0595 | 1.99 | 220 | 0.0708 | | 0.0393 | 2.08 | 230 | 0.0743 | | 0.0384 | 2.18 | 240 | 0.0757 | | 0.0369 | 2.27 | 250 | 0.0737 | | 0.0362 | 2.36 | 260 | 0.0765 | | 0.0409 | 2.45 | 270 | 0.0756 | | 0.0366 | 2.54 | 280 | 0.0714 | | 0.0344 | 2.63 | 290 | 0.0714 | | 0.0381 | 2.72 | 300 | 0.0688 | | 0.0358 | 2.81 | 310 | 0.0687 | | 0.035 | 2.9 | 320 | 0.0683 | | 0.0361 | 2.99 | 330 | 0.0683 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1