--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0424HMA3 results: [] --- # V0424HMA3 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8524 | 0.09 | 10 | 0.4537 | | 0.1997 | 0.18 | 20 | 0.1136 | | 0.113 | 0.27 | 30 | 0.0908 | | 0.0995 | 0.36 | 40 | 0.0755 | | 0.0777 | 0.45 | 50 | 0.0740 | | 0.0815 | 0.54 | 60 | 0.0752 | | 0.0785 | 0.63 | 70 | 0.0753 | | 0.0849 | 0.73 | 80 | 0.0838 | | 0.0878 | 0.82 | 90 | 0.0910 | | 0.0853 | 0.91 | 100 | 0.0737 | | 0.0807 | 1.0 | 110 | 0.0721 | | 0.067 | 1.09 | 120 | 0.0745 | | 0.0718 | 1.18 | 130 | 0.0849 | | 0.0677 | 1.27 | 140 | 0.0658 | | 0.0693 | 1.36 | 150 | 0.0678 | | 0.0711 | 1.45 | 160 | 0.0712 | | 0.068 | 1.54 | 170 | 0.0707 | | 0.0687 | 1.63 | 180 | 0.0709 | | 0.0597 | 1.72 | 190 | 0.0673 | | 0.065 | 1.81 | 200 | 0.0702 | | 0.0576 | 1.9 | 210 | 0.0699 | | 0.0535 | 1.99 | 220 | 0.0610 | | 0.0382 | 2.08 | 230 | 0.0712 | | 0.0367 | 2.18 | 240 | 0.0693 | | 0.0307 | 2.27 | 250 | 0.0662 | | 0.0311 | 2.36 | 260 | 0.0800 | | 0.0422 | 2.45 | 270 | 0.0673 | | 0.0352 | 2.54 | 280 | 0.0661 | | 0.0305 | 2.63 | 290 | 0.0681 | | 0.0352 | 2.72 | 300 | 0.0671 | | 0.0337 | 2.81 | 310 | 0.0672 | | 0.0333 | 2.9 | 320 | 0.0669 | | 0.0354 | 2.99 | 330 | 0.0669 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1