File size: 3,042 Bytes
7a4d103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
base_model: microsoft/phi-2
tags:
- generated_from_trainer
model-index:
- name: V0424HMA3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# V0424HMA3

This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0669

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8524        | 0.09  | 10   | 0.4537          |
| 0.1997        | 0.18  | 20   | 0.1136          |
| 0.113         | 0.27  | 30   | 0.0908          |
| 0.0995        | 0.36  | 40   | 0.0755          |
| 0.0777        | 0.45  | 50   | 0.0740          |
| 0.0815        | 0.54  | 60   | 0.0752          |
| 0.0785        | 0.63  | 70   | 0.0753          |
| 0.0849        | 0.73  | 80   | 0.0838          |
| 0.0878        | 0.82  | 90   | 0.0910          |
| 0.0853        | 0.91  | 100  | 0.0737          |
| 0.0807        | 1.0   | 110  | 0.0721          |
| 0.067         | 1.09  | 120  | 0.0745          |
| 0.0718        | 1.18  | 130  | 0.0849          |
| 0.0677        | 1.27  | 140  | 0.0658          |
| 0.0693        | 1.36  | 150  | 0.0678          |
| 0.0711        | 1.45  | 160  | 0.0712          |
| 0.068         | 1.54  | 170  | 0.0707          |
| 0.0687        | 1.63  | 180  | 0.0709          |
| 0.0597        | 1.72  | 190  | 0.0673          |
| 0.065         | 1.81  | 200  | 0.0702          |
| 0.0576        | 1.9   | 210  | 0.0699          |
| 0.0535        | 1.99  | 220  | 0.0610          |
| 0.0382        | 2.08  | 230  | 0.0712          |
| 0.0367        | 2.18  | 240  | 0.0693          |
| 0.0307        | 2.27  | 250  | 0.0662          |
| 0.0311        | 2.36  | 260  | 0.0800          |
| 0.0422        | 2.45  | 270  | 0.0673          |
| 0.0352        | 2.54  | 280  | 0.0661          |
| 0.0305        | 2.63  | 290  | 0.0681          |
| 0.0352        | 2.72  | 300  | 0.0671          |
| 0.0337        | 2.81  | 310  | 0.0672          |
| 0.0333        | 2.9   | 320  | 0.0669          |
| 0.0354        | 2.99  | 330  | 0.0669          |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1