--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0424HMA10 results: [] --- # V0424HMA10 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9203 | 0.09 | 10 | 0.5860 | | 0.216 | 0.18 | 20 | 0.1276 | | 0.1187 | 0.27 | 30 | 0.1089 | | 0.1066 | 0.36 | 40 | 0.0864 | | 0.0822 | 0.45 | 50 | 0.0775 | | 0.0891 | 0.54 | 60 | 0.0866 | | 0.0867 | 0.63 | 70 | 0.0769 | | 0.0772 | 0.73 | 80 | 0.0991 | | 0.0862 | 0.82 | 90 | 0.1365 | | 4.6622 | 0.91 | 100 | 3.8668 | | 1.4048 | 1.0 | 110 | 0.7169 | | 0.5278 | 1.09 | 120 | 0.3863 | | 0.3475 | 1.18 | 130 | 0.3058 | | 0.2901 | 1.27 | 140 | 0.2546 | | 0.2383 | 1.36 | 150 | 0.2151 | | 0.1965 | 1.45 | 160 | 0.1826 | | 0.1841 | 1.54 | 170 | 0.1697 | | 0.1713 | 1.63 | 180 | 0.1678 | | 0.1713 | 1.72 | 190 | 0.2457 | | 0.1698 | 1.81 | 200 | 0.1620 | | 0.1594 | 1.9 | 210 | 0.1489 | | 0.1532 | 1.99 | 220 | 0.1470 | | 0.1478 | 2.08 | 230 | 0.1530 | | 0.1418 | 2.18 | 240 | 0.1405 | | 0.1398 | 2.27 | 250 | 0.1367 | | 0.1399 | 2.36 | 260 | 0.1384 | | 0.1343 | 2.45 | 270 | 0.1368 | | 0.1352 | 2.54 | 280 | 0.1354 | | 0.1321 | 2.63 | 290 | 0.1372 | | 0.1342 | 2.72 | 300 | 0.1354 | | 0.1407 | 2.81 | 310 | 0.1351 | | 0.1344 | 2.9 | 320 | 0.1352 | | 0.1328 | 2.99 | 330 | 0.1353 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1