--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0417MADP8 results: [] --- # V0417MADP8 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 60 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.4354 | 0.09 | 10 | 2.6496 | | 4.1578 | 0.18 | 20 | 1.5199 | | 2.23 | 0.27 | 30 | 0.1826 | | 0.884 | 0.36 | 40 | 0.1456 | | 0.1889 | 0.45 | 50 | 0.1308 | | 0.1501 | 0.54 | 60 | 0.1216 | | 0.1389 | 0.63 | 70 | 0.1104 | | 0.1173 | 0.73 | 80 | 0.1018 | | 0.1086 | 0.82 | 90 | 0.0899 | | 0.0966 | 0.91 | 100 | 0.0814 | | 0.098 | 1.0 | 110 | 0.0814 | | 0.093 | 1.09 | 120 | 0.0846 | | 0.093 | 1.18 | 130 | 0.0811 | | 0.091 | 1.27 | 140 | 0.0782 | | 0.0858 | 1.36 | 150 | 0.0767 | | 0.0853 | 1.45 | 160 | 0.0817 | | 0.089 | 1.54 | 170 | 0.0804 | | 0.0854 | 1.63 | 180 | 0.0751 | | 0.0841 | 1.72 | 190 | 0.0766 | | 0.0843 | 1.81 | 200 | 0.0722 | | 0.0763 | 1.9 | 210 | 0.0706 | | 0.0778 | 1.99 | 220 | 0.0707 | | 0.0712 | 2.08 | 230 | 0.0697 | | 0.066 | 2.18 | 240 | 0.0691 | | 0.0687 | 2.27 | 250 | 0.0711 | | 0.0714 | 2.36 | 260 | 0.0695 | | 0.0685 | 2.45 | 270 | 0.0692 | | 0.0648 | 2.54 | 280 | 0.0688 | | 0.0645 | 2.63 | 290 | 0.0675 | | 0.0668 | 2.72 | 300 | 0.0670 | | 0.0665 | 2.81 | 310 | 0.0672 | | 0.0628 | 2.9 | 320 | 0.0671 | | 0.0736 | 2.99 | 330 | 0.0671 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1