|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class DepthwiseSeparableConv(nn.Module): |
|
""" |
|
Depth-wise separable convolution uses less parameters to generate output by convolution. |
|
:Examples: |
|
>>> m = DepthwiseSeparableConv(300, 200, 5, dim=1) |
|
>>> input_tensor = torch.randn(32, 300, 20) |
|
>>> output = m(input_tensor) |
|
""" |
|
|
|
def __init__(self, in_ch, out_ch, k, dim=1, relu=True): |
|
""" |
|
:param in_ch: input hidden dimension size |
|
:param out_ch: output hidden dimension size |
|
:param k: kernel size |
|
:param dim: default 1. 1D conv or 2D conv |
|
""" |
|
super(DepthwiseSeparableConv, self).__init__() |
|
self.relu = relu |
|
if dim == 1: |
|
self.depthwise_conv = nn.Conv1d(in_channels=in_ch, out_channels=in_ch, |
|
kernel_size=k, groups=in_ch, padding=k//2) |
|
self.pointwise_conv = nn.Conv1d(in_channels=in_ch, out_channels=out_ch, |
|
kernel_size=1, padding=0) |
|
elif dim == 2: |
|
self.depthwise_conv = nn.Conv2d(in_channels=in_ch, out_channels=in_ch, |
|
kernel_size=k, groups=in_ch, padding=k//2) |
|
self.pointwise_conv = nn.Conv2d(in_channels=in_ch, out_channels=out_ch, |
|
kernel_size=1, padding=0) |
|
else: |
|
raise Exception("Incorrect dimension!") |
|
|
|
def forward(self, x): |
|
""" |
|
:Input: (N, L_in, D) |
|
:Output: (N, L_out, D) |
|
""" |
|
x = x.transpose(1, 2) |
|
if self.relu: |
|
out = F.relu(self.pointwise_conv(self.depthwise_conv(x)), inplace=True) |
|
else: |
|
out = self.pointwise_conv(self.depthwise_conv(x)) |
|
return out.transpose(1, 2) |
|
|
|
|
|
class ConvEncoder(nn.Module): |
|
def __init__(self, kernel_size=7, n_filters=128, dropout=0.1): |
|
super(ConvEncoder, self).__init__() |
|
self.dropout = nn.Dropout(dropout) |
|
self.layer_norm = nn.LayerNorm(n_filters) |
|
self.conv = DepthwiseSeparableConv(in_ch=n_filters, out_ch=n_filters, k=kernel_size, relu=True) |
|
|
|
def forward(self, x, mask): |
|
""" |
|
:param x: (N, L, D) |
|
:param mask: (N, L), is not used. |
|
:return: (N, L, D) |
|
""" |
|
return self.layer_norm(self.dropout(self.conv(x)) + x) |
|
|
|
|
|
class TrainablePositionalEncoding(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings. |
|
""" |
|
def __init__(self, max_position_embeddings, hidden_size, dropout=0.1): |
|
super(TrainablePositionalEncoding, self).__init__() |
|
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) |
|
self.LayerNorm = nn.LayerNorm(hidden_size) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, input_feat): |
|
""" |
|
Args: |
|
input_feat: (N, L, D) |
|
""" |
|
bsz, seq_length = input_feat.shape[:2] |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_feat.device) |
|
position_ids = position_ids.unsqueeze(0).repeat(bsz, 1) |
|
|
|
position_embeddings = self.position_embeddings(position_ids) |
|
|
|
embeddings = self.LayerNorm(input_feat + position_embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class PositionEncoding(nn.Module): |
|
""" |
|
Add positional information to input tensor. |
|
:Examples: |
|
>>> model = PositionEncoding(n_filters=6, max_len=10) |
|
>>> test_input1 = torch.zeros(3, 10, 6) |
|
>>> output1 = model(test_input1) |
|
>>> output1.size() |
|
>>> test_input2 = torch.zeros(5, 3, 9, 6) |
|
>>> output2 = model(test_input2) |
|
>>> output2.size() |
|
""" |
|
|
|
def __init__(self, n_filters=128, max_len=500, pe_type="cosine"): |
|
""" |
|
:param n_filters: same with input hidden size |
|
:param max_len: maximum sequence length |
|
:param pe_type: cosine or linear or None |
|
""" |
|
super(PositionEncoding, self).__init__() |
|
self.pe_type = pe_type |
|
if pe_type != "none": |
|
position = torch.arange(0, max_len).float().unsqueeze(1) |
|
if pe_type == "cosine": |
|
|
|
pe = torch.zeros(max_len, n_filters) |
|
div_term = torch.exp(torch.arange(0, n_filters, 2).float() * - (math.log(10000.0) / n_filters)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
elif pe_type == "linear": |
|
pe = position / max_len |
|
else: |
|
raise ValueError |
|
self.register_buffer("pe", pe) |
|
|
|
def forward(self, x): |
|
""" |
|
:Input: (*, L, D) |
|
:Output: (*, L, D) the same size as input |
|
""" |
|
if self.pe_type != "none": |
|
pe = self.pe.data[:x.size(-2), :] |
|
extra_dim = len(x.size()) - 2 |
|
for _ in range(extra_dim): |
|
pe = pe.unsqueeze(0) |
|
x = x + pe |
|
return x |
|
|
|
|
|
class LinearLayer(nn.Module): |
|
"""linear layer configurable with layer normalization, dropout, ReLU.""" |
|
|
|
def __init__(self, in_hsz, out_hsz, layer_norm=True, dropout=0.1, relu=True): |
|
super(LinearLayer, self).__init__() |
|
self.relu = relu |
|
self.layer_norm = layer_norm |
|
if layer_norm: |
|
self.LayerNorm = nn.LayerNorm(in_hsz) |
|
layers = [ |
|
nn.Dropout(dropout), |
|
nn.Linear(in_hsz, out_hsz) |
|
] |
|
self.net = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
"""(N, L, D)""" |
|
if self.layer_norm: |
|
x = self.LayerNorm(x) |
|
x = self.net(x) |
|
if self.relu: |
|
x = F.relu(x, inplace=True) |
|
return x |
|
|
|
|
|
bert_config = dict( |
|
hidden_size=768, |
|
intermediate_size=768, |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
num_attention_heads=4, |
|
) |
|
|
|
|
|
class BertLayer(nn.Module): |
|
def __init__(self, config, use_self_attention=True): |
|
super(BertLayer, self).__init__() |
|
self.use_self_attention = use_self_attention |
|
if use_self_attention: |
|
self.attention = BertAttention(config) |
|
self.intermediate = BertIntermediate(config) |
|
self.output = BertOutput(config) |
|
|
|
def forward(self, hidden_states, attention_mask): |
|
""" |
|
Args: |
|
hidden_states: (N, L, D) |
|
attention_mask: (N, L) with 1 indicate valid, 0 indicates invalid |
|
Returns: |
|
|
|
""" |
|
if self.use_self_attention: |
|
attention_output = self.attention(hidden_states, attention_mask) |
|
else: |
|
attention_output = hidden_states |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class BertAttention(nn.Module): |
|
def __init__(self, config): |
|
super(BertAttention, self).__init__() |
|
self.self = BertSelfAttention(config) |
|
self.output = BertSelfOutput(config) |
|
|
|
def forward(self, input_tensor, attention_mask): |
|
""" |
|
Args: |
|
input_tensor: (N, L, D) |
|
attention_mask: (N, L) |
|
Returns: |
|
""" |
|
self_output = self.self(input_tensor, input_tensor, input_tensor, attention_mask) |
|
attention_output = self.output(self_output, input_tensor) |
|
return attention_output |
|
|
|
|
|
class BertIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super(BertIntermediate, self).__init__() |
|
self.dense = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.intermediate_size), |
|
nn.ReLU(True)) |
|
|
|
def forward(self, hidden_states): |
|
return self.dense(hidden_states) |
|
|
|
|
|
class BertOutput(nn.Module): |
|
def __init__(self, config): |
|
super(BertOutput, self).__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super(BertSelfAttention, self).__init__() |
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError( |
|
"The hidden size (%d) is not a multiple of the number of attention " |
|
"heads (%d)" % (config.hidden_size, config.num_attention_heads)) |
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward(self, query_states, key_states, value_states, attention_mask): |
|
""" |
|
Args: |
|
query_states: (N, Lq, D) |
|
key_states: (N, L, D) |
|
value_states: (N, L, D) |
|
attention_mask: (N, Lq, L) |
|
Returns: |
|
""" |
|
|
|
|
|
attention_mask = (1 - attention_mask.unsqueeze(1)) * -10000. |
|
mixed_query_layer = self.query(query_states) |
|
mixed_key_layer = self.key(key_states) |
|
mixed_value_layer = self.value(value_states) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
key_layer = self.transpose_for_scores(mixed_key_layer) |
|
value_layer = self.transpose_for_scores(mixed_value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
return context_layer |
|
|
|
|
|
class BertSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super(BertSelfOutput, self).__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|