|
import os |
|
import time |
|
import torch |
|
import argparse |
|
|
|
from utils.basic_utils import mkdirp, load_json, save_json, make_zipfile |
|
from baselines.clip_alignment_with_language.local_utils.proposal import ProposalConfigs |
|
|
|
|
|
class BaseOptions(object): |
|
saved_option_filename = "opt.json" |
|
ckpt_filename = "model.ckpt" |
|
tensorboard_log_dir = "tensorboard_log" |
|
train_log_filename = "train.log.txt" |
|
eval_log_filename = "eval.log.txt" |
|
|
|
def __init__(self): |
|
self.parser = argparse.ArgumentParser() |
|
self.initialized = False |
|
self.opt = None |
|
|
|
def initialize(self): |
|
self.initialized = True |
|
self.parser.add_argument("--dset_name", type=str, choices=["tvr"]) |
|
self.parser.add_argument("--eval_split_name", type=str, default="val", |
|
help="should match keys in corpus_path, must set for VCMR") |
|
self.parser.add_argument("--debug", action="store_true", |
|
help="debug (fast) mode, break all loops, do not load all data into memory.") |
|
self.parser.add_argument("--data_ratio", type=float, default=1.0, |
|
help="how many training and eval data to use. 1.0: use all, 0.1: use 10%." |
|
"Use small portion for debug purposes. Note this is different from --debug, " |
|
"which works by breaking the loops, typically they are not used together.") |
|
self.parser.add_argument("--results_root", type=str, default="results") |
|
self.parser.add_argument("--exp_id", type=str, default=None, help="id of this run, required at training") |
|
self.parser.add_argument("--seed", type=int, default=2018, help="random seed") |
|
self.parser.add_argument("--device", type=int, default=0, help="0 cuda, -1 cpu") |
|
self.parser.add_argument("--device_ids", type=int, nargs="+", default=[0], help="GPU ids to run the job") |
|
self.parser.add_argument("--num_workers", type=int, default=8, |
|
help="num subprocesses used to load the data, 0: use main process") |
|
self.parser.add_argument("--no_core_driver", action="store_true", |
|
help="hdf5 driver, default use `core` (load into RAM), if specified, use `None`") |
|
self.parser.add_argument("--no_pin_memory", action="store_true", |
|
help="Don't use pin_memory=True for dataloader. " |
|
"ref: https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/4") |
|
|
|
|
|
self.parser.add_argument("--lr", type=float, default=1e-3, help="learning rate") |
|
self.parser.add_argument("--lr_warmup_proportion", type=float, default=0.01, |
|
help="Proportion of training to perform linear learning rate warmup for. " |
|
"E.g., 0.1 = 10% of training.") |
|
self.parser.add_argument("--wd", type=float, default=0.01, help="weight decay") |
|
self.parser.add_argument("--n_epoch", type=int, default=30, help="number of epochs to run") |
|
self.parser.add_argument("--max_es_cnt", type=int, default=10, |
|
help="number of epochs to early stop, use -1 to disable early stop") |
|
self.parser.add_argument("--stop_task", type=str, default="SVMR", choices=["VCMR", "SVMR", "VR"]) |
|
self.parser.add_argument("--eval_tasks_at_training", type=str, nargs="+", |
|
default=["SVMR"], choices=["VCMR", "SVMR", "VR"], |
|
help="evaluate and report numbers for tasks specified here.") |
|
self.parser.add_argument("--bsz", type=int, default=128, help="mini-batch size") |
|
self.parser.add_argument("--eval_query_bsz", type=int, default=50, |
|
help="mini-batch size at inference, for query") |
|
self.parser.add_argument("--eval_context_bsz", type=int, default=200, |
|
help="mini-batch size at inference, for video/sub") |
|
self.parser.add_argument("--eval_untrained", action="store_true", help="Evaluate on un-trained model") |
|
self.parser.add_argument("--grad_clip", type=float, default=-1, help="perform gradient clip, -1: disable") |
|
self.parser.add_argument("--margin", type=float, default=0.1, help="margin for hinge loss") |
|
self.parser.add_argument("--lw_neg_q", type=float, default=1, |
|
help="weight for ranking loss with negative query and positive context") |
|
self.parser.add_argument("--lw_neg_ctx", type=float, default=1, |
|
help="weight for ranking loss with positive query and negative context") |
|
self.parser.add_argument("--lw_st_ed", type=float, default=0.01, help="weight for st ed prediction loss") |
|
self.parser.add_argument("--train_span_start_epoch", type=int, default=0, |
|
help="which epoch to start training span prediction, -1 to disable") |
|
self.parser.add_argument("--ranking_loss_type", type=str, default="hinge", choices=["hinge", "lse"], |
|
help="att loss type, can be hinge loss or its smooth approximation LogSumExp") |
|
self.parser.add_argument("--hard_negtiave_start_epoch", type=int, default=20, |
|
help="which epoch to start hard negative sampling for video-level ranking loss," |
|
"use -1 to disable") |
|
self.parser.add_argument("--hard_pool_size", type=int, default=20, |
|
help="hard negatives are still sampled, but from a harder pool.") |
|
|
|
|
|
self.parser.add_argument("--max_sub_l", type=int, default=50, |
|
help="max length of all sub sentence 97.71 under 50 for 3 sentences") |
|
self.parser.add_argument("--max_desc_l", type=int, default=30, help="max length of descriptions") |
|
self.parser.add_argument("--max_ctx_l", type=int, default=100, |
|
help="max number of snippets, 100 for tvr clip_length=1.5, oly 109/21825 > 100") |
|
|
|
self.parser.add_argument("--train_path", type=str, default=None) |
|
self.parser.add_argument("--eval_path", type=str, default=None, |
|
help="Evaluating during training, for Dev set. If None, will only do training, " |
|
"anet_cap and charades_sta has no dev set, so None") |
|
self.parser.add_argument("--use_glove", action="store_true", help="Use GloVe instead of BERT features") |
|
self.parser.add_argument("--word2idx_path", type=str, |
|
help="a dict, {word: word_idx, ...}, " |
|
"special tokens are {<pad>: 0, <unk>: 1, <eos>: 2}") |
|
self.parser.add_argument("--vocab_size", type=int, default=-1, |
|
help="Set automatically to len(word2idx)") |
|
self.parser.add_argument("--glove_path", type=str, |
|
help="path to file containing the GloVe embeddings for words in word2idx") |
|
self.parser.add_argument("--desc_bert_path", type=str, default=None) |
|
self.parser.add_argument("--sub_bert_path", type=str, default=None) |
|
self.parser.add_argument("--sub_feat_size", type=int, default=768, help="feature dim for sub feature") |
|
self.parser.add_argument("--q_feat_size", type=int, default=768, help="feature dim for sub feature") |
|
self.parser.add_argument("--ctx_mode", type=str, choices=["video", "sub", "video_sub", "tef", |
|
"video_tef", "sub_tef", "video_sub_tef"], |
|
help="which context to use. a combination of [video, sub, tef]") |
|
self.parser.add_argument("--corpus_path", type=str, default=None) |
|
self.parser.add_argument("--vid_feat_path", type=str, default="") |
|
self.parser.add_argument("--no_norm_vfeat", action="store_true", |
|
help="Do not do normalization on video feat, use it when using i3d_resnet concat feat") |
|
self.parser.add_argument("--no_norm_tfeat", action="store_true", help="Do not do normalization on text feat") |
|
self.parser.add_argument("--clip_length", type=float, default=None, |
|
help="each video will be uniformly segmented into small clips, " |
|
"will automatically loaded from ProposalConfigs if None") |
|
self.parser.add_argument("--vid_feat_size", type=int, help="feature dim for video feature") |
|
|
|
self.parser.add_argument("--external_inference_vr_res_path", type=str, default=None, |
|
help="if set, use external video retrieval results to guide evaluation. ") |
|
self.parser.add_argument("--span_predictor_type", type=str, default="conv", choices=["conv", "cat_linear"], |
|
help="how to generate span predictions, " |
|
"conv: apply 1D-Conv layer on top of NxL dot product of query and clips" |
|
"cat_linear: cat the query and clips then use a linear layer to give output. " |
|
"Note cat_linear is implemented as first project query and clips into scores, " |
|
"separately, then sum them up, this should be similar to first cat then project.") |
|
self.parser.add_argument("--encoder_type", type=str, default="transformer", |
|
choices=["gru", "lstm", "transformer", "cnn"]) |
|
self.parser.add_argument("--add_pe_rnn", action="store_true", |
|
help="Add positional encoding for GRU and LSTM encoder as well") |
|
self.parser.add_argument("--no_merge_two_stream", action="store_true", help="do not merge video and subtitles") |
|
self.parser.add_argument("--no_cross_att", action="store_true", |
|
help="Use cross-attention for modeling video and subtitles") |
|
self.parser.add_argument("--no_self_att", action="store_true", help="do not use self attention") |
|
self.parser.add_argument("--no_modular", action="store_true", help="do not use modular attention") |
|
self.parser.add_argument("--pe_type", type=str, default="cosine", choices=["none", "linear", "cosine"], |
|
help="Only for query encoding") |
|
self.parser.add_argument("--max_position_embeddings", type=int, default=300) |
|
self.parser.add_argument("--hidden_size", type=int, default=128) |
|
self.parser.add_argument("--n_heads", type=int, default=4) |
|
self.parser.add_argument("--input_drop", type=float, default=0.1, help="Applied to all inputs") |
|
self.parser.add_argument("--drop", type=float, default=0.1, help="Applied to all other layers") |
|
self.parser.add_argument("--cross_att_drop", type=float, default=0.1, help="Applied to cross-att") |
|
self.parser.add_argument("--conv_kernel_size", type=int, default=5) |
|
self.parser.add_argument("--conv_stride", type=int, default=1) |
|
self.parser.add_argument("--initializer_range", type=float, default=0.02, |
|
help="initializer range for linear layer") |
|
|
|
|
|
self.parser.add_argument("--min_pred_l", type=int, default=2, |
|
help="constrain the [st, ed] with ed - st >= 2" |
|
"(2 clips with length 1.5 each, 3 secs in total" |
|
"this is the min length for proposal-based method)") |
|
self.parser.add_argument("--max_pred_l", type=int, default=16, |
|
help="constrain the [st, ed] pairs with ed - st <= 16, 24 secs in total" |
|
"(16 clips with length 1.5 each, " |
|
"this is the max length for proposal-based method)") |
|
self.parser.add_argument("--q2c_alpha", type=float, default=20, |
|
help="give more importance to top scored videos' spans, " |
|
"the new score will be: s_new = exp(alpha * s), " |
|
"higher alpha indicates more importance. Note s in [-1, 1]") |
|
|
|
self.parser.add_argument("--max_before_nms", type=int, default=200) |
|
self.parser.add_argument("--max_vcmr_video", type=int, default=100, |
|
help="re-ranking in top-max_vcmr_video") |
|
self.parser.add_argument("--nms_thd", type=float, default=-1, |
|
help="additionally use non-maximum suppression " |
|
"(or non-minimum suppression for distance)" |
|
"to post-processing the predictions. " |
|
"-1: do not use nms. 0.6 for charades_sta, 0.5 for anet_cap,") |
|
|
|
def display_save(self, opt): |
|
args = vars(opt) |
|
|
|
print("------------ Options -------------\n{}\n-------------------" |
|
.format({str(k): str(v) for k, v in sorted(args.items())})) |
|
|
|
|
|
if not isinstance(self, TestOptions): |
|
option_file_path = os.path.join(opt.results_dir, self.saved_option_filename) |
|
save_json(args, option_file_path, save_pretty=True) |
|
|
|
def parse(self): |
|
if not self.initialized: |
|
self.initialize() |
|
opt = self.parser.parse_args() |
|
|
|
if opt.debug: |
|
opt.results_root = os.path.sep.join(opt.results_root.split(os.path.sep)[:-1] + ["debug_results", ]) |
|
opt.no_core_driver = True |
|
opt.num_workers = 0 |
|
opt.eval_query_bsz = 100 |
|
|
|
if isinstance(self, TestOptions): |
|
|
|
opt.model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "results", opt.model_dir) |
|
saved_options = load_json(os.path.join(opt.model_dir, self.saved_option_filename)) |
|
for arg in saved_options: |
|
if arg not in ["results_root", "num_workers", "nms_thd", "debug", "eval_split_name", |
|
"eval_path", "max_pred_l", "min_pred_l"]: |
|
setattr(opt, arg, saved_options[arg]) |
|
|
|
else: |
|
if opt.exp_id is None: |
|
raise ValueError("--exp_id is required for at a training option!") |
|
|
|
if opt.clip_length is None: |
|
opt.clip_length = ProposalConfigs[opt.dset_name]["clip_length"] |
|
print("Loaded clip_length {} from proposal config file".format(opt.clip_length)) |
|
opt.results_dir = os.path.join(opt.results_root, |
|
"-".join([opt.dset_name, opt.ctx_mode, opt.exp_id, |
|
time.strftime("%Y_%m_%d_%H_%M_%S")])) |
|
mkdirp(opt.results_dir) |
|
|
|
code_dir = os.path.dirname(os.path.realpath(__file__)) |
|
code_zip_filename = os.path.join(opt.results_dir, "code.zip") |
|
make_zipfile(code_dir, code_zip_filename, |
|
enclosing_dir="code", |
|
exclude_dirs_substring="results", |
|
exclude_dirs=["results", "debug_results", "__pycache__"], |
|
exclude_extensions=[".pyc", ".ipynb", ".swap"],) |
|
|
|
self.display_save(opt) |
|
|
|
if "sub" in opt.ctx_mode: |
|
assert opt.dset_name == "tvr", "sub is only supported for tvr dataset" |
|
|
|
if opt.hard_negtiave_start_epoch != -1: |
|
if opt.hard_pool_size > opt.bsz: |
|
print("[WARNING] hard_pool_size is larger than bsz") |
|
|
|
assert opt.stop_task in opt.eval_tasks_at_training |
|
opt.ckpt_filepath = os.path.join(opt.results_dir, self.ckpt_filename) |
|
opt.train_log_filepath = os.path.join(opt.results_dir, self.train_log_filename) |
|
opt.eval_log_filepath = os.path.join(opt.results_dir, self.eval_log_filename) |
|
opt.tensorboard_log_dir = os.path.join(opt.results_dir, self.tensorboard_log_dir) |
|
opt.device = torch.device("cuda:%d" % opt.device_ids[0] if opt.device >= 0 else "cpu") |
|
opt.h5driver = None if opt.no_core_driver else "core" |
|
|
|
opt.num_workers = 1 if opt.no_core_driver else opt.num_workers |
|
opt.pin_memory = not opt.no_pin_memory |
|
|
|
if "video" in opt.ctx_mode and opt.vid_feat_size > 3000: |
|
assert opt.no_norm_vfeat |
|
|
|
if "tef" in opt.ctx_mode and "video" in opt.ctx_mode: |
|
opt.vid_feat_size += 2 |
|
if "tef" in opt.ctx_mode and "sub" in opt.ctx_mode: |
|
opt.sub_feat_size += 2 |
|
|
|
if "video" not in opt.ctx_mode or "sub" not in opt.ctx_mode: |
|
opt.no_merge_two_stream = True |
|
opt.no_cross_att = True |
|
|
|
self.opt = opt |
|
return opt |
|
|
|
|
|
class TestOptions(BaseOptions): |
|
"""add additional options for evaluating""" |
|
def initialize(self): |
|
BaseOptions.initialize(self) |
|
|
|
self.parser.add_argument("--eval_id", type=str, help="evaluation id") |
|
self.parser.add_argument("--model_dir", type=str, |
|
help="dir contains the model file, will be converted to absolute path afterwards") |
|
self.parser.add_argument("--tasks", type=str, nargs="+", |
|
choices=["VCMR", "SVMR", "VR"], default=["VCMR", "SVMR", "VR"], |
|
help="Which tasks to run." |
|
"VCMR: Video Corpus Moment Retrieval;" |
|
"SVMR: Single Video Moment Retrieval;" |
|
"VR: regular Video Retrieval. (will be performed automatically with VCMR)") |
|
|