Liangrj5
init
ebf5d87
import os
import time
import torch
import argparse
from utils.basic_utils import mkdirp, load_json, save_json, make_zipfile
from baselines.clip_alignment_with_language.local_utils.proposal import ProposalConfigs
class BaseOptions(object):
saved_option_filename = "opt.json"
ckpt_filename = "model.ckpt"
tensorboard_log_dir = "tensorboard_log"
train_log_filename = "train.log.txt"
eval_log_filename = "eval.log.txt"
def __init__(self):
self.parser = argparse.ArgumentParser()
self.initialized = False
self.opt = None
def initialize(self):
self.initialized = True
self.parser.add_argument("--dset_name", type=str, choices=["tvr"])
self.parser.add_argument("--eval_split_name", type=str, default="val",
help="should match keys in corpus_path, must set for VCMR")
self.parser.add_argument("--debug", action="store_true",
help="debug (fast) mode, break all loops, do not load all data into memory.")
self.parser.add_argument("--data_ratio", type=float, default=1.0,
help="how many training and eval data to use. 1.0: use all, 0.1: use 10%."
"Use small portion for debug purposes. Note this is different from --debug, "
"which works by breaking the loops, typically they are not used together.")
self.parser.add_argument("--results_root", type=str, default="results")
self.parser.add_argument("--exp_id", type=str, default=None, help="id of this run, required at training")
self.parser.add_argument("--seed", type=int, default=2018, help="random seed")
self.parser.add_argument("--device", type=int, default=0, help="0 cuda, -1 cpu")
self.parser.add_argument("--device_ids", type=int, nargs="+", default=[0], help="GPU ids to run the job")
self.parser.add_argument("--num_workers", type=int, default=8,
help="num subprocesses used to load the data, 0: use main process")
self.parser.add_argument("--no_core_driver", action="store_true",
help="hdf5 driver, default use `core` (load into RAM), if specified, use `None`")
self.parser.add_argument("--no_pin_memory", action="store_true",
help="Don't use pin_memory=True for dataloader. "
"ref: https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/4")
# training config
self.parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
self.parser.add_argument("--lr_warmup_proportion", type=float, default=0.01,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training.")
self.parser.add_argument("--wd", type=float, default=0.01, help="weight decay")
self.parser.add_argument("--n_epoch", type=int, default=30, help="number of epochs to run")
self.parser.add_argument("--max_es_cnt", type=int, default=10,
help="number of epochs to early stop, use -1 to disable early stop")
self.parser.add_argument("--stop_task", type=str, default="SVMR", choices=["VCMR", "SVMR", "VR"])
self.parser.add_argument("--eval_tasks_at_training", type=str, nargs="+",
default=["SVMR"], choices=["VCMR", "SVMR", "VR"],
help="evaluate and report numbers for tasks specified here.")
self.parser.add_argument("--bsz", type=int, default=128, help="mini-batch size")
self.parser.add_argument("--eval_query_bsz", type=int, default=50,
help="mini-batch size at inference, for query")
self.parser.add_argument("--eval_context_bsz", type=int, default=200,
help="mini-batch size at inference, for video/sub")
self.parser.add_argument("--eval_untrained", action="store_true", help="Evaluate on un-trained model")
self.parser.add_argument("--grad_clip", type=float, default=-1, help="perform gradient clip, -1: disable")
self.parser.add_argument("--margin", type=float, default=0.1, help="margin for hinge loss")
self.parser.add_argument("--lw_neg_q", type=float, default=1,
help="weight for ranking loss with negative query and positive context")
self.parser.add_argument("--lw_neg_ctx", type=float, default=1,
help="weight for ranking loss with positive query and negative context")
self.parser.add_argument("--lw_st_ed", type=float, default=0.01, help="weight for st ed prediction loss")
self.parser.add_argument("--train_span_start_epoch", type=int, default=0,
help="which epoch to start training span prediction, -1 to disable")
self.parser.add_argument("--ranking_loss_type", type=str, default="hinge", choices=["hinge", "lse"],
help="att loss type, can be hinge loss or its smooth approximation LogSumExp")
self.parser.add_argument("--hard_negtiave_start_epoch", type=int, default=20,
help="which epoch to start hard negative sampling for video-level ranking loss,"
"use -1 to disable")
self.parser.add_argument("--hard_pool_size", type=int, default=20,
help="hard negatives are still sampled, but from a harder pool.")
# Model and Data config
self.parser.add_argument("--max_sub_l", type=int, default=50,
help="max length of all sub sentence 97.71 under 50 for 3 sentences")
self.parser.add_argument("--max_desc_l", type=int, default=30, help="max length of descriptions")
self.parser.add_argument("--max_ctx_l", type=int, default=100,
help="max number of snippets, 100 for tvr clip_length=1.5, oly 109/21825 > 100")
self.parser.add_argument("--train_path", type=str, default=None)
self.parser.add_argument("--eval_path", type=str, default=None,
help="Evaluating during training, for Dev set. If None, will only do training, "
"anet_cap and charades_sta has no dev set, so None")
self.parser.add_argument("--use_glove", action="store_true", help="Use GloVe instead of BERT features")
self.parser.add_argument("--word2idx_path", type=str,
help="a dict, {word: word_idx, ...}, "
"special tokens are {<pad>: 0, <unk>: 1, <eos>: 2}")
self.parser.add_argument("--vocab_size", type=int, default=-1,
help="Set automatically to len(word2idx)")
self.parser.add_argument("--glove_path", type=str,
help="path to file containing the GloVe embeddings for words in word2idx")
self.parser.add_argument("--desc_bert_path", type=str, default=None)
self.parser.add_argument("--sub_bert_path", type=str, default=None)
self.parser.add_argument("--sub_feat_size", type=int, default=768, help="feature dim for sub feature")
self.parser.add_argument("--q_feat_size", type=int, default=768, help="feature dim for sub feature")
self.parser.add_argument("--ctx_mode", type=str, choices=["video", "sub", "video_sub", "tef",
"video_tef", "sub_tef", "video_sub_tef"],
help="which context to use. a combination of [video, sub, tef]")
self.parser.add_argument("--corpus_path", type=str, default=None)
self.parser.add_argument("--vid_feat_path", type=str, default="")
self.parser.add_argument("--no_norm_vfeat", action="store_true",
help="Do not do normalization on video feat, use it when using i3d_resnet concat feat")
self.parser.add_argument("--no_norm_tfeat", action="store_true", help="Do not do normalization on text feat")
self.parser.add_argument("--clip_length", type=float, default=None,
help="each video will be uniformly segmented into small clips, "
"will automatically loaded from ProposalConfigs if None")
self.parser.add_argument("--vid_feat_size", type=int, help="feature dim for video feature")
self.parser.add_argument("--external_inference_vr_res_path", type=str, default=None,
help="if set, use external video retrieval results to guide evaluation. ")
self.parser.add_argument("--span_predictor_type", type=str, default="conv", choices=["conv", "cat_linear"],
help="how to generate span predictions, "
"conv: apply 1D-Conv layer on top of NxL dot product of query and clips"
"cat_linear: cat the query and clips then use a linear layer to give output. "
"Note cat_linear is implemented as first project query and clips into scores, "
"separately, then sum them up, this should be similar to first cat then project.")
self.parser.add_argument("--encoder_type", type=str, default="transformer",
choices=["gru", "lstm", "transformer", "cnn"])
self.parser.add_argument("--add_pe_rnn", action="store_true",
help="Add positional encoding for GRU and LSTM encoder as well")
self.parser.add_argument("--no_merge_two_stream", action="store_true", help="do not merge video and subtitles")
self.parser.add_argument("--no_cross_att", action="store_true",
help="Use cross-attention for modeling video and subtitles")
self.parser.add_argument("--no_self_att", action="store_true", help="do not use self attention")
self.parser.add_argument("--no_modular", action="store_true", help="do not use modular attention")
self.parser.add_argument("--pe_type", type=str, default="cosine", choices=["none", "linear", "cosine"],
help="Only for query encoding")
self.parser.add_argument("--max_position_embeddings", type=int, default=300)
self.parser.add_argument("--hidden_size", type=int, default=128)
self.parser.add_argument("--n_heads", type=int, default=4)
self.parser.add_argument("--input_drop", type=float, default=0.1, help="Applied to all inputs")
self.parser.add_argument("--drop", type=float, default=0.1, help="Applied to all other layers")
self.parser.add_argument("--cross_att_drop", type=float, default=0.1, help="Applied to cross-att")
self.parser.add_argument("--conv_kernel_size", type=int, default=5)
self.parser.add_argument("--conv_stride", type=int, default=1)
self.parser.add_argument("--initializer_range", type=float, default=0.02,
help="initializer range for linear layer")
# post processing
self.parser.add_argument("--min_pred_l", type=int, default=2,
help="constrain the [st, ed] with ed - st >= 2"
"(2 clips with length 1.5 each, 3 secs in total"
"this is the min length for proposal-based method)")
self.parser.add_argument("--max_pred_l", type=int, default=16,
help="constrain the [st, ed] pairs with ed - st <= 16, 24 secs in total"
"(16 clips with length 1.5 each, "
"this is the max length for proposal-based method)")
self.parser.add_argument("--q2c_alpha", type=float, default=20,
help="give more importance to top scored videos' spans, "
"the new score will be: s_new = exp(alpha * s), "
"higher alpha indicates more importance. Note s in [-1, 1]")
self.parser.add_argument("--max_before_nms", type=int, default=200)
self.parser.add_argument("--max_vcmr_video", type=int, default=100,
help="re-ranking in top-max_vcmr_video")
self.parser.add_argument("--nms_thd", type=float, default=-1,
help="additionally use non-maximum suppression "
"(or non-minimum suppression for distance)"
"to post-processing the predictions. "
"-1: do not use nms. 0.6 for charades_sta, 0.5 for anet_cap,")
def display_save(self, opt):
args = vars(opt)
# Display settings
print("------------ Options -------------\n{}\n-------------------"
.format({str(k): str(v) for k, v in sorted(args.items())}))
# Save settings
if not isinstance(self, TestOptions):
option_file_path = os.path.join(opt.results_dir, self.saved_option_filename) # not yaml file indeed
save_json(args, option_file_path, save_pretty=True)
def parse(self):
if not self.initialized:
self.initialize()
opt = self.parser.parse_args()
if opt.debug:
opt.results_root = os.path.sep.join(opt.results_root.split(os.path.sep)[:-1] + ["debug_results", ])
opt.no_core_driver = True
opt.num_workers = 0
opt.eval_query_bsz = 100
if isinstance(self, TestOptions):
# modify model_dir to absolute path
opt.model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "results", opt.model_dir)
saved_options = load_json(os.path.join(opt.model_dir, self.saved_option_filename))
for arg in saved_options: # use saved options to overwrite all BaseOptions args.
if arg not in ["results_root", "num_workers", "nms_thd", "debug", "eval_split_name",
"eval_path", "max_pred_l", "min_pred_l"]:
setattr(opt, arg, saved_options[arg])
# opt.no_core_driver = True
else:
if opt.exp_id is None:
raise ValueError("--exp_id is required for at a training option!")
if opt.clip_length is None:
opt.clip_length = ProposalConfigs[opt.dset_name]["clip_length"]
print("Loaded clip_length {} from proposal config file".format(opt.clip_length))
opt.results_dir = os.path.join(opt.results_root,
"-".join([opt.dset_name, opt.ctx_mode, opt.exp_id,
time.strftime("%Y_%m_%d_%H_%M_%S")]))
mkdirp(opt.results_dir)
# save a copy of current code
code_dir = os.path.dirname(os.path.realpath(__file__))
code_zip_filename = os.path.join(opt.results_dir, "code.zip")
make_zipfile(code_dir, code_zip_filename,
enclosing_dir="code",
exclude_dirs_substring="results",
exclude_dirs=["results", "debug_results", "__pycache__"],
exclude_extensions=[".pyc", ".ipynb", ".swap"],)
self.display_save(opt)
if "sub" in opt.ctx_mode:
assert opt.dset_name == "tvr", "sub is only supported for tvr dataset"
if opt.hard_negtiave_start_epoch != -1:
if opt.hard_pool_size > opt.bsz:
print("[WARNING] hard_pool_size is larger than bsz")
assert opt.stop_task in opt.eval_tasks_at_training
opt.ckpt_filepath = os.path.join(opt.results_dir, self.ckpt_filename)
opt.train_log_filepath = os.path.join(opt.results_dir, self.train_log_filename)
opt.eval_log_filepath = os.path.join(opt.results_dir, self.eval_log_filename)
opt.tensorboard_log_dir = os.path.join(opt.results_dir, self.tensorboard_log_dir)
opt.device = torch.device("cuda:%d" % opt.device_ids[0] if opt.device >= 0 else "cpu")
opt.h5driver = None if opt.no_core_driver else "core"
# num_workers > 1 will only work with "core" mode, i.e., memory-mapped hdf5
opt.num_workers = 1 if opt.no_core_driver else opt.num_workers
opt.pin_memory = not opt.no_pin_memory
if "video" in opt.ctx_mode and opt.vid_feat_size > 3000: # 3072, the normalized concatenation of resnet+i3d
assert opt.no_norm_vfeat
if "tef" in opt.ctx_mode and "video" in opt.ctx_mode:
opt.vid_feat_size += 2
if "tef" in opt.ctx_mode and "sub" in opt.ctx_mode:
opt.sub_feat_size += 2
if "video" not in opt.ctx_mode or "sub" not in opt.ctx_mode:
opt.no_merge_two_stream = True
opt.no_cross_att = True
self.opt = opt
return opt
class TestOptions(BaseOptions):
"""add additional options for evaluating"""
def initialize(self):
BaseOptions.initialize(self)
# also need to specify --eval_split_name
self.parser.add_argument("--eval_id", type=str, help="evaluation id")
self.parser.add_argument("--model_dir", type=str,
help="dir contains the model file, will be converted to absolute path afterwards")
self.parser.add_argument("--tasks", type=str, nargs="+",
choices=["VCMR", "SVMR", "VR"], default=["VCMR", "SVMR", "VR"],
help="Which tasks to run."
"VCMR: Video Corpus Moment Retrieval;"
"SVMR: Single Video Moment Retrieval;"
"VR: regular Video Retrieval. (will be performed automatically with VCMR)")