File size: 11,380 Bytes
ebf5d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
import time
import json
import pprint
import random
import numpy as np
from collections import OrderedDict
from easydict import EasyDict as EDict
from tqdm import tqdm, trange

import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from baselines.mixture_embedding_experts.config import BaseOptions
from baselines.mixture_embedding_experts.model import MEE
from baselines.mixture_embedding_experts.retrieval_dataset import \
    RetrievalDataset, retrieval_collate, RetrievalEvalDataset, prepare_batch_inputs
from baselines.mixture_embedding_experts.inference import eval_epoch, start_inference
from utils.basic_utils import save_jsonl, save_json, AverageMeter
from utils.model_utils import count_parameters


import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
                    datefmt="%Y-%m-%d %H:%M:%S",
                    level=logging.INFO)


def set_seed(seed, use_cuda=True):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if use_cuda:
        torch.cuda.manual_seed_all(seed)


def train_epoch(model, train_loader, optimizer, opt, epoch_i):
    model.train()

    # init meters
    dataloading_time = AverageMeter()
    prepare_inputs_time = AverageMeter()
    model_forward_time = AverageMeter()
    model_backward_time = AverageMeter()
    loss_meter = AverageMeter()

    num_training_examples = len(train_loader)
    timer_dataloading = time.time()
    for batch_idx, batch in tqdm(enumerate(train_loader),
                                 desc="Training Iteration",
                                 total=num_training_examples):
        dataloading_time.update(time.time() - timer_dataloading)

        # continue
        timer_start = time.time()
        model_inputs = prepare_batch_inputs(batch[1], opt.device, non_blocking=opt.pin_memory)
        prepare_inputs_time.update(time.time() - timer_start)
        timer_start = time.time()
        loss = model(**model_inputs)
        model_forward_time.update(time.time() - timer_start)
        timer_start = time.time()
        optimizer.zero_grad()
        loss.backward()
        if opt.grad_clip != -1:
            nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
        optimizer.step()
        model_backward_time.update(time.time() - timer_start)

        global_step = epoch_i * num_training_examples + batch_idx
        opt.writer.add_scalar("Train/LR", float(optimizer.param_groups[0]["lr"]), global_step)
        opt.writer.add_scalar("Train/Loss", float(loss), global_step)
        loss_meter.update(float(loss))

        timer_dataloading = time.time()
        if opt.debug and batch_idx == 3:
            break
    to_write = opt.train_log_txt_formatter.format(
        time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
        epoch=epoch_i,
        loss_str=str(loss_meter.avg))
    with open(opt.train_log_filepath, "a") as f:
        f.write(to_write)
    print("Epoch time stats:")
    print("dataloading_time: max {dataloading_time.max} "
          "min {dataloading_time.min} avg {dataloading_time.avg}\n"
          "prepare_inputs_time: max {prepare_inputs_time.max} "
          "min {prepare_inputs_time.min} avg {prepare_inputs_time.avg}\n"
          "model_forward_time: max {model_forward_time.max} "
          "min {model_forward_time.min} avg {model_forward_time.avg}\n"
          "model_backward_time: max {model_backward_time.max} "
          "min {model_backward_time.min} avg {model_backward_time.avg}\n"
          "".format(dataloading_time=dataloading_time, prepare_inputs_time=prepare_inputs_time,
                    model_forward_time=model_forward_time, model_backward_time=model_backward_time))


def train(model, train_dataset, val_dataset, opt):
    # Prepare optimizer
    if opt.device.type == "cuda":
        logger.info("CUDA enabled.")
        model.to(opt.device)
        if len(opt.device_ids) > 1:
            logger.info("Use multi GPU", opt.device_ids)
            model = torch.nn.DataParallel(model, device_ids=opt.device_ids)  # use multi GPU

    optimizer = torch.optim.Adam(
        filter(lambda p: p.requires_grad, model.parameters()),
        lr=opt.lr)
    # reduce the lr by 0.1 every 30 epochs
    scheduler = torch.optim.lr_scheduler.ExponentialLR(
        optimizer,
        gamma=0.95
    )

    train_loader = DataLoader(train_dataset,
                              collate_fn=retrieval_collate,
                              batch_size=opt.bsz,
                              num_workers=opt.num_workers,
                              shuffle=True,
                              pin_memory=opt.pin_memory)

    prev_best_score = 0.
    es_cnt = 0
    start_epoch = -1 if opt.eval_untrained else 0
    eval_tasks_at_training = ["VR"]
    save_submission_filename = \
        "latest_{}_{}_predictions_{}.json".format(opt.dset_name, opt.eval_split_name, "_".join(eval_tasks_at_training))
    for epoch_i in trange(start_epoch, opt.n_epoch, desc="Epoch"):
        if epoch_i > -1:
            with torch.autograd.detect_anomaly():
                train_epoch(model, train_loader, optimizer, opt, epoch_i)
        global_step = (epoch_i + 1) * len(train_loader)
        scheduler.step()
        if opt.eval_path is not None:
            with torch.no_grad():
                metrics_no_nms, metrics_nms, latest_file_paths = \
                    eval_epoch(model, val_dataset, opt, save_submission_filename, tasks=eval_tasks_at_training)
            logger.info("metrics_no_nms {}".format(
                pprint.pformat(rm_key_from_odict(metrics_no_nms, rm_suffix="by_type"), indent=4)))
            logger.info("metrics_nms \n{}".format(pprint.pformat(metrics_nms, indent=4)))

            to_write = opt.eval_log_txt_formatter.format(
                time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
                epoch=epoch_i,
                eval_metrics_str=json.dumps(metrics_no_nms))
            with open(opt.eval_log_filepath, "a") as f:
                f.write(to_write)

            # metrics = metrics_nms if metrics_nms is not None else metrics_no_nms
            metrics = metrics_no_nms
            # early stop/ log / save model
            for task_type, task_metrics in metrics.items():
                for iou_thd in [0.5, 0.7]:
                    opt.writer.add_scalars("Eval/{}-{}".format(task_type, iou_thd),
                                           {k: v for k, v in task_metrics.items() if str(iou_thd) in k},
                                           global_step)

            # use the most strict metric available
            if metrics["VR"]["r1"] > prev_best_score:
                es_cnt = 0
                prev_best_score = metrics["VR"]["r1"]

                checkpoint = {
                    "model": model.state_dict(),
                    "model_cfg": model.config,
                    "epoch": epoch_i}
                torch.save(checkpoint, opt.ckpt_filepath)

                best_file_paths = [e.replace("latest", "best") for e in latest_file_paths]
                for src, tgt in zip(latest_file_paths, best_file_paths):
                    os.renames(src, tgt)
                logger.info("The checkpoint file has been updated.")
            else:
                es_cnt += 1
                if es_cnt > opt.max_es_cnt:  # early stop
                    with open(opt.train_log_filepath, "a") as f:
                        f.write("Early Stop at epoch {}".format(epoch_i))
                    logger.info("Early stop at {} with VR r1 {}".format(epoch_i, prev_best_score))
                    break
        else:
            checkpoint = {
                "model": model.state_dict(),
                "model_cfg": model.config,
                "epoch": epoch_i}
            torch.save(checkpoint, opt.ckpt_filepath)

        if opt.debug:
            break

    opt.writer.close()


def rm_key_from_odict(odict_obj, rm_suffix):
    """remove key entry from the OrderedDict"""
    return OrderedDict([(k, v) for k, v in odict_obj.items() if rm_suffix not in k])


def start_training():
    logger.info("Setup config, data and model...")
    opt = BaseOptions().parse()
    set_seed(opt.seed)
    if opt.debug:  # keep the model run deterministically
        # 'cudnn.benchmark = True' enabled auto finding the best algorithm for a specific input/net config.
        # Enable this only when input size is fixed.
        cudnn.benchmark = False
        cudnn.deterministic = True

    opt.writer = SummaryWriter(opt.tensorboard_log_dir)
    opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
    opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Metrics] {eval_metrics_str}\n"

    train_dataset = RetrievalDataset(
        dset_name=opt.dset_name,
        data_path=opt.train_path,
        desc_bert_path_or_handler=opt.desc_bert_path,
        sub_bert_path_or_handler=opt.sub_bert_path,
        vid_feat_path_or_handler=opt.vid_feat_path,
        max_desc_len=opt.max_desc_l,
        max_ctx_len=opt.max_ctx_l,
        ctx_mode=opt.ctx_mode,
        h5driver=opt.h5driver,
        data_ratio=opt.data_ratio,
        normalize_vfeat=not opt.no_norm_vfeat,
        normalize_tfeat=not opt.no_norm_tfeat,
    )

    if opt.eval_path is not None:
        eval_dataset = RetrievalEvalDataset(
            dset_name=opt.dset_name,
            eval_split_name=opt.eval_split_name,  # should only be val set
            data_path=opt.eval_path,
            desc_bert_path_or_handler=train_dataset.desc_bert_h5,
            sub_bert_path_or_handler=train_dataset.sub_bert_h5 if "sub" in opt.ctx_mode else None,
            max_desc_len=opt.max_desc_l,
            max_ctx_len=opt.max_ctx_l,
            corpus_path=opt.corpus_path,
            vid_feat_path_or_handler=train_dataset.vid_feat_h5 if "video" in opt.ctx_mode else None,
            ctx_mode=opt.ctx_mode,
            data_mode="query",
            h5driver=opt.h5driver,
            data_ratio=opt.data_ratio,
            normalize_vfeat=not opt.no_norm_vfeat,
            normalize_tfeat=not opt.no_norm_tfeat,
        )
    else:
        eval_dataset = None

    model_config = EDict(
        ctx_mode=opt.ctx_mode,
        text_input_size=opt.sub_feat_size,
        vid_input_size=opt.vid_feat_size,  #
        output_size=opt.output_size,
        margin=opt.margin,  # margin for ranking loss
    )
    logger.info("model_config {}".format(model_config))
    model = MEE(model_config)
    count_parameters(model)
    logger.info("Start Training...")
    train(model, train_dataset, eval_dataset, opt)
    return opt.results_dir, opt.eval_split_name, opt.eval_path, opt.debug


if __name__ == '__main__':
    model_dir, eval_split_name, eval_path, debug = start_training()
    if not debug:
        model_dir = model_dir.split(os.sep)[-1]
        tasks = ["VR"]
        input_args = ["--model_dir", model_dir,
                      "--eval_split_name", eval_split_name,
                      "--eval_path", eval_path,
                      "--tasks"] + tasks

        import sys
        sys.argv[1:] = input_args
        logger.info("\n\n\nFINISHED TRAINING!!!")
        logger.info("Evaluating model in {}".format(model_dir))
        start_inference()