File size: 11,380 Bytes
ebf5d87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import os
import time
import json
import pprint
import random
import numpy as np
from collections import OrderedDict
from easydict import EasyDict as EDict
from tqdm import tqdm, trange
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from baselines.mixture_embedding_experts.config import BaseOptions
from baselines.mixture_embedding_experts.model import MEE
from baselines.mixture_embedding_experts.retrieval_dataset import \
RetrievalDataset, retrieval_collate, RetrievalEvalDataset, prepare_batch_inputs
from baselines.mixture_embedding_experts.inference import eval_epoch, start_inference
from utils.basic_utils import save_jsonl, save_json, AverageMeter
from utils.model_utils import count_parameters
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
def set_seed(seed, use_cuda=True):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if use_cuda:
torch.cuda.manual_seed_all(seed)
def train_epoch(model, train_loader, optimizer, opt, epoch_i):
model.train()
# init meters
dataloading_time = AverageMeter()
prepare_inputs_time = AverageMeter()
model_forward_time = AverageMeter()
model_backward_time = AverageMeter()
loss_meter = AverageMeter()
num_training_examples = len(train_loader)
timer_dataloading = time.time()
for batch_idx, batch in tqdm(enumerate(train_loader),
desc="Training Iteration",
total=num_training_examples):
dataloading_time.update(time.time() - timer_dataloading)
# continue
timer_start = time.time()
model_inputs = prepare_batch_inputs(batch[1], opt.device, non_blocking=opt.pin_memory)
prepare_inputs_time.update(time.time() - timer_start)
timer_start = time.time()
loss = model(**model_inputs)
model_forward_time.update(time.time() - timer_start)
timer_start = time.time()
optimizer.zero_grad()
loss.backward()
if opt.grad_clip != -1:
nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
optimizer.step()
model_backward_time.update(time.time() - timer_start)
global_step = epoch_i * num_training_examples + batch_idx
opt.writer.add_scalar("Train/LR", float(optimizer.param_groups[0]["lr"]), global_step)
opt.writer.add_scalar("Train/Loss", float(loss), global_step)
loss_meter.update(float(loss))
timer_dataloading = time.time()
if opt.debug and batch_idx == 3:
break
to_write = opt.train_log_txt_formatter.format(
time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
epoch=epoch_i,
loss_str=str(loss_meter.avg))
with open(opt.train_log_filepath, "a") as f:
f.write(to_write)
print("Epoch time stats:")
print("dataloading_time: max {dataloading_time.max} "
"min {dataloading_time.min} avg {dataloading_time.avg}\n"
"prepare_inputs_time: max {prepare_inputs_time.max} "
"min {prepare_inputs_time.min} avg {prepare_inputs_time.avg}\n"
"model_forward_time: max {model_forward_time.max} "
"min {model_forward_time.min} avg {model_forward_time.avg}\n"
"model_backward_time: max {model_backward_time.max} "
"min {model_backward_time.min} avg {model_backward_time.avg}\n"
"".format(dataloading_time=dataloading_time, prepare_inputs_time=prepare_inputs_time,
model_forward_time=model_forward_time, model_backward_time=model_backward_time))
def train(model, train_dataset, val_dataset, opt):
# Prepare optimizer
if opt.device.type == "cuda":
logger.info("CUDA enabled.")
model.to(opt.device)
if len(opt.device_ids) > 1:
logger.info("Use multi GPU", opt.device_ids)
model = torch.nn.DataParallel(model, device_ids=opt.device_ids) # use multi GPU
optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
lr=opt.lr)
# reduce the lr by 0.1 every 30 epochs
scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer,
gamma=0.95
)
train_loader = DataLoader(train_dataset,
collate_fn=retrieval_collate,
batch_size=opt.bsz,
num_workers=opt.num_workers,
shuffle=True,
pin_memory=opt.pin_memory)
prev_best_score = 0.
es_cnt = 0
start_epoch = -1 if opt.eval_untrained else 0
eval_tasks_at_training = ["VR"]
save_submission_filename = \
"latest_{}_{}_predictions_{}.json".format(opt.dset_name, opt.eval_split_name, "_".join(eval_tasks_at_training))
for epoch_i in trange(start_epoch, opt.n_epoch, desc="Epoch"):
if epoch_i > -1:
with torch.autograd.detect_anomaly():
train_epoch(model, train_loader, optimizer, opt, epoch_i)
global_step = (epoch_i + 1) * len(train_loader)
scheduler.step()
if opt.eval_path is not None:
with torch.no_grad():
metrics_no_nms, metrics_nms, latest_file_paths = \
eval_epoch(model, val_dataset, opt, save_submission_filename, tasks=eval_tasks_at_training)
logger.info("metrics_no_nms {}".format(
pprint.pformat(rm_key_from_odict(metrics_no_nms, rm_suffix="by_type"), indent=4)))
logger.info("metrics_nms \n{}".format(pprint.pformat(metrics_nms, indent=4)))
to_write = opt.eval_log_txt_formatter.format(
time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
epoch=epoch_i,
eval_metrics_str=json.dumps(metrics_no_nms))
with open(opt.eval_log_filepath, "a") as f:
f.write(to_write)
# metrics = metrics_nms if metrics_nms is not None else metrics_no_nms
metrics = metrics_no_nms
# early stop/ log / save model
for task_type, task_metrics in metrics.items():
for iou_thd in [0.5, 0.7]:
opt.writer.add_scalars("Eval/{}-{}".format(task_type, iou_thd),
{k: v for k, v in task_metrics.items() if str(iou_thd) in k},
global_step)
# use the most strict metric available
if metrics["VR"]["r1"] > prev_best_score:
es_cnt = 0
prev_best_score = metrics["VR"]["r1"]
checkpoint = {
"model": model.state_dict(),
"model_cfg": model.config,
"epoch": epoch_i}
torch.save(checkpoint, opt.ckpt_filepath)
best_file_paths = [e.replace("latest", "best") for e in latest_file_paths]
for src, tgt in zip(latest_file_paths, best_file_paths):
os.renames(src, tgt)
logger.info("The checkpoint file has been updated.")
else:
es_cnt += 1
if es_cnt > opt.max_es_cnt: # early stop
with open(opt.train_log_filepath, "a") as f:
f.write("Early Stop at epoch {}".format(epoch_i))
logger.info("Early stop at {} with VR r1 {}".format(epoch_i, prev_best_score))
break
else:
checkpoint = {
"model": model.state_dict(),
"model_cfg": model.config,
"epoch": epoch_i}
torch.save(checkpoint, opt.ckpt_filepath)
if opt.debug:
break
opt.writer.close()
def rm_key_from_odict(odict_obj, rm_suffix):
"""remove key entry from the OrderedDict"""
return OrderedDict([(k, v) for k, v in odict_obj.items() if rm_suffix not in k])
def start_training():
logger.info("Setup config, data and model...")
opt = BaseOptions().parse()
set_seed(opt.seed)
if opt.debug: # keep the model run deterministically
# 'cudnn.benchmark = True' enabled auto finding the best algorithm for a specific input/net config.
# Enable this only when input size is fixed.
cudnn.benchmark = False
cudnn.deterministic = True
opt.writer = SummaryWriter(opt.tensorboard_log_dir)
opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Metrics] {eval_metrics_str}\n"
train_dataset = RetrievalDataset(
dset_name=opt.dset_name,
data_path=opt.train_path,
desc_bert_path_or_handler=opt.desc_bert_path,
sub_bert_path_or_handler=opt.sub_bert_path,
vid_feat_path_or_handler=opt.vid_feat_path,
max_desc_len=opt.max_desc_l,
max_ctx_len=opt.max_ctx_l,
ctx_mode=opt.ctx_mode,
h5driver=opt.h5driver,
data_ratio=opt.data_ratio,
normalize_vfeat=not opt.no_norm_vfeat,
normalize_tfeat=not opt.no_norm_tfeat,
)
if opt.eval_path is not None:
eval_dataset = RetrievalEvalDataset(
dset_name=opt.dset_name,
eval_split_name=opt.eval_split_name, # should only be val set
data_path=opt.eval_path,
desc_bert_path_or_handler=train_dataset.desc_bert_h5,
sub_bert_path_or_handler=train_dataset.sub_bert_h5 if "sub" in opt.ctx_mode else None,
max_desc_len=opt.max_desc_l,
max_ctx_len=opt.max_ctx_l,
corpus_path=opt.corpus_path,
vid_feat_path_or_handler=train_dataset.vid_feat_h5 if "video" in opt.ctx_mode else None,
ctx_mode=opt.ctx_mode,
data_mode="query",
h5driver=opt.h5driver,
data_ratio=opt.data_ratio,
normalize_vfeat=not opt.no_norm_vfeat,
normalize_tfeat=not opt.no_norm_tfeat,
)
else:
eval_dataset = None
model_config = EDict(
ctx_mode=opt.ctx_mode,
text_input_size=opt.sub_feat_size,
vid_input_size=opt.vid_feat_size, #
output_size=opt.output_size,
margin=opt.margin, # margin for ranking loss
)
logger.info("model_config {}".format(model_config))
model = MEE(model_config)
count_parameters(model)
logger.info("Start Training...")
train(model, train_dataset, eval_dataset, opt)
return opt.results_dir, opt.eval_split_name, opt.eval_path, opt.debug
if __name__ == '__main__':
model_dir, eval_split_name, eval_path, debug = start_training()
if not debug:
model_dir = model_dir.split(os.sep)[-1]
tasks = ["VR"]
input_args = ["--model_dir", model_dir,
"--eval_split_name", eval_split_name,
"--eval_path", eval_path,
"--tasks"] + tasks
import sys
sys.argv[1:] = input_args
logger.info("\n\n\nFINISHED TRAINING!!!")
logger.info("Evaluating model in {}".format(model_dir))
start_inference()
|