File size: 11,545 Bytes
ebf5d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
"""
Dataset for clip model
"""
import logging
import torch
from torch.utils.data import Dataset
import numpy as np
import h5py
from utils.basic_utils import load_jsonl, load_json, l2_normalize_np_array, flat_list_of_lists, merge_dicts
from utils.tensor_utils import pad_sequences_1d

logger = logging.getLogger(__name__)


class RetrievalDataset(Dataset):
    """
    Args:
        dset_name, str, ["tvr"]
        ctx_mode: str,
    Return:
        a dict: {
            "meta": {
                "query_id": int,
                "desc": str,
                "vid_name": str,
                "duration": float,
                "ts": [st (float), ed (float)], seconds, ground_truth timestamps
            }
            "model_inputs": {
                "query_feat": torch.tensor, (L, D_q)
                "video_feat": torch.tensor, (n_clip_in_moment, D_video)
                "sub_feat": torch.tensor, (n_clip_in_moment, D_sub)
                "st_ed_indices": torch.LongTensor, (2, )
            }
        }
    """
    def __init__(self, dset_name, data_path, desc_bert_path_or_handler, sub_bert_path_or_handler,
                 vid_feat_path_or_handler, max_desc_len, max_ctx_len, ctx_mode="video",
                 normalize_vfeat=True, normalize_tfeat=True, h5driver=None, data_ratio=1.0):
        self.dset_name = dset_name
        self.data_path = data_path
        self.data_ratio = data_ratio
        self.max_desc_len = max_desc_len
        self.max_ctx_len = max_ctx_len

        self.desc_bert_path_or_handler = desc_bert_path_or_handler
        self.sub_bert_path_or_handler = sub_bert_path_or_handler
        self.vid_feat_path_or_handler = vid_feat_path_or_handler
        self.ctx_mode = ctx_mode

        # prepare desc data
        self.data = load_jsonl(data_path)
        if self.data_ratio != 1:
            n_examples = int(len(self.data) * data_ratio)
            self.data = self.data[:n_examples]
            logger.info("Using {}% of the data: {} examples".format(data_ratio * 100, n_examples))

        self.use_video = "video" in self.ctx_mode
        self.use_sub = "sub" in self.ctx_mode
        self.use_tef = "tef" in self.ctx_mode

        if self.use_video:
            if isinstance(vid_feat_path_or_handler, h5py.File):
                self.vid_feat_h5 = vid_feat_path_or_handler
            else:  # str path
                self.vid_feat_h5 = h5py.File(vid_feat_path_or_handler, "r", driver=h5driver)

        if isinstance(desc_bert_path_or_handler, h5py.File):
            self.desc_bert_h5 = desc_bert_path_or_handler
        else:
            self.desc_bert_h5 = h5py.File(desc_bert_path_or_handler, "r", driver=h5driver)

        if self.use_sub:
            if isinstance(sub_bert_path_or_handler, h5py.File):
                self.sub_bert_h5 = sub_bert_path_or_handler
            else:  # str path
                self.sub_bert_h5 = h5py.File(sub_bert_path_or_handler, "r", driver=h5driver)

        self.normalize_vfeat = normalize_vfeat
        self.normalize_tfeat = normalize_tfeat

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        raw_data = self.data[index]

        # initialize with basic data
        meta = dict(
            query_id=raw_data["query_id"],
            desc=raw_data["desc"],
            vid_name=raw_data["vid_name"],
            duration=raw_data["duration"],
        )
        model_inputs = dict()
        model_inputs["query_feat"] = self.get_query_feat_by_query_id(meta["query_id"])

        ctx_l = 0
        if self.use_video:
            video_feat = np.mean(self.vid_feat_h5[meta["vid_name"]][:self.max_ctx_len], axis=0)  # (D, )
            if self.normalize_vfeat:
                video_feat = l2_normalize_np_array(video_feat)
            model_inputs["video_feat"] = torch.from_numpy(video_feat)
        else:
            model_inputs["video_feat"] = torch.zeros(2)

        if self.use_sub:  # no need for ctx feature, as the features are already contextulized
            sub_feat = np.mean(self.sub_bert_h5[meta["vid_name"]][:self.max_ctx_len], axis=0)  # (N_clips, D_t)
            if self.normalize_tfeat:
                sub_feat = l2_normalize_np_array(sub_feat)
            model_inputs["sub_feat"] = torch.from_numpy(sub_feat)
        else:
            model_inputs["sub_feat"] = torch.zeros(2)
        return dict(meta=meta, model_inputs=model_inputs)

    def get_query_feat_by_query_id(self, query_id):
        query_feat = self.desc_bert_h5[str(query_id)][:self.max_desc_len]
        if self.normalize_tfeat:
            query_feat = l2_normalize_np_array(query_feat)
        return torch.from_numpy(query_feat)


class RetrievalEvalDataset(Dataset):
    """
    init_data_mode: `video_query` or `video_only` or `query_only`,
        it indicates which data to load when initialize the Dataset object.
    data_mode: `context` or `query`, it indicates which data to return for self.__get_item__()
    desc_bert_path_or_handler: h5py.File object or str path
    vid_feat_path_or_handler: h5py.File object or str path
    eval_proposal_bsz: the proposals for a single video will be sorted in length and batched here with
        max batch size to be eval_proposal_bsz. A single video might have multiple batches of proposals.
    load_gt_video: load GroundTruth Video, useful when evaluating single video moment retrieval.
    data_ratio: percentage of query data to use.
    """
    def __init__(self, dset_name, eval_split_name, data_path=None,
                 desc_bert_path_or_handler=None, max_desc_len=None,  max_ctx_len=None,
                 sub_bert_path_or_handler=None, vid_feat_path_or_handler=None,
                 corpus_path=None, ctx_mode="video", data_mode="context",
                 h5driver=None, data_ratio=1.0, normalize_vfeat=True, normalize_tfeat=True):
        self.dset_name = dset_name
        self.eval_split_name = eval_split_name
        self.ctx_mode = ctx_mode
        self.load_gt_video = False
        self.data_ratio = data_ratio  # only affect query data
        self.normalize_vfeat = normalize_vfeat
        self.normalize_tfeat = normalize_tfeat

        self.data_mode = None
        self.set_data_mode(data_mode)

        self.max_desc_len = max_desc_len
        self.max_ctx_len = max_ctx_len
        self.data_path = data_path
        self.query_data = load_jsonl(data_path)
        if data_ratio != 1:
            n_examples = int(len(self.query_data) * data_ratio)
            self.query_data = self.query_data[:n_examples]
            logger.info("Using {}% of the data: {} examples".format(data_ratio * 100, n_examples))
        if isinstance(desc_bert_path_or_handler, h5py.File):
            self.desc_bert_h5 = desc_bert_path_or_handler
        else:
            self.desc_bert_h5 = h5py.File(desc_bert_path_or_handler, "r", driver=h5driver)

        video_data = load_json(corpus_path)[self.eval_split_name]
        self.video_data = [{"vid_name": k, "duration": v[0]} for k, v in video_data.items()]
        self.video2idx = {k: v[1] for k, v in video_data.items()}

        self.use_video = "video" in self.ctx_mode
        self.use_sub = "sub" in self.ctx_mode
        self.use_tef = "tef" in self.ctx_mode

        if self.use_video:
            if isinstance(vid_feat_path_or_handler, h5py.File):
                self.vid_feat_h5 = vid_feat_path_or_handler
            else:  # str path
                self.vid_feat_h5 = h5py.File(vid_feat_path_or_handler, "r", driver=h5driver)

        if self.use_sub:
            if isinstance(sub_bert_path_or_handler, h5py.File):
                self.sub_bert_h5 = sub_bert_path_or_handler
            else:  # str path
                self.sub_bert_h5 = h5py.File(sub_bert_path_or_handler, "r", driver=h5driver)

    def set_data_mode(self, data_mode):
        """context or query"""
        assert data_mode in ["context", "query"]
        self.data_mode = data_mode

    def load_gt_vid_name_for_query(self, load_gt_video):
        """load_gt_video: bool, affect the returned value of self._get_item_query"""
        assert "vid_name" in self.query_data[0]
        self.load_gt_video = load_gt_video

    def __len__(self):
        if self.data_mode == "context":
            return len(self.video_data)
        else:
            return len(self.query_data)

    def __getitem__(self, index):
        if self.data_mode == "context":
            return self._get_item_context(index)
        else:
            return self._get_item_query(index)

    def get_query_feat_by_query_id(self, query_id):
        query_feat = self.desc_bert_h5[str(query_id)][:self.max_desc_len]
        if self.normalize_tfeat:
            query_feat = l2_normalize_np_array(query_feat)
        return torch.from_numpy(query_feat)

    def _get_item_query(self, index):
        """Need to batch"""
        raw_data = self.query_data[index]

        meta = dict(
            query_id=raw_data["query_id"],
            desc=raw_data["desc"],
            vid_name=raw_data["vid_name"] if self.load_gt_video else None
        )

        model_inputs = dict()
        model_inputs["query_feat"] = self.get_query_feat_by_query_id(meta["query_id"])
        return dict(meta=meta, model_inputs=model_inputs)

    def _get_item_context(self, index):
        """No need to batch, since it has already been batched here"""
        raw_data = self.video_data[index]

        # initialize with basic data
        meta = dict(
            vid_name=raw_data["vid_name"],
            duration=raw_data["duration"],
        )

        model_inputs = dict()

        if self.use_video:
            video_feat = np.mean(self.vid_feat_h5[meta["vid_name"]][:self.max_ctx_len], axis=0)  # (1, D)
            if self.normalize_vfeat:
                video_feat = l2_normalize_np_array(video_feat)
            model_inputs["video_feat"] = torch.from_numpy(video_feat)
        else:
            model_inputs["video_feat"] = torch.zeros(2)

        if self.use_sub:  # no need for ctx feature, as the features are already contextulized
            sub_feat = np.mean(self.sub_bert_h5[meta["vid_name"]][:self.max_ctx_len], axis=0)
            if self.normalize_tfeat:
                sub_feat = l2_normalize_np_array(sub_feat)
            model_inputs["sub_feat"] = torch.from_numpy(sub_feat)
        else:
            model_inputs["sub_feat"] = torch.zeros(2)
        return dict(meta=meta, model_inputs=model_inputs)


def retrieval_collate(batch):
    batch_meta = [e["meta"] for e in batch]  # seems no need to collate ?

    model_inputs_keys = batch[0]["model_inputs"].keys()
    batched_data = dict()
    for k in model_inputs_keys:
        if k == "query_feat":
            batched_data[k] = pad_sequences_1d(
                [e["model_inputs"][k] for e in batch], dtype=torch.float32, fixed_length=None)
        elif "feat" in k:
            batched_data[k] = torch.stack([e["model_inputs"][k] for e in batch])
    return batch_meta, batched_data


def prepare_batch_inputs(batched_model_inputs, device, non_blocking=False):
    model_inputs = {}
    for k, v in batched_model_inputs.items():
        if k == "query_feat":
            model_inputs[k] = v[0].to(device, non_blocking=non_blocking)
            model_inputs[k.replace("feat", "mask")] = v[1].to(device, non_blocking=non_blocking)
        else:
            model_inputs[k] = v.to(device, non_blocking=non_blocking)
    return model_inputs


if __name__ == '__main__':
    from baselines.crossmodal_moment_localization.config import BaseOptions
    options = BaseOptions().parse()