File size: 26,849 Bytes
3d09deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
---
license: apache-2.0
---

**[CVPR'25] Official PyTorch implementation of "[**MobileMamba: Lightweight Multi-Receptive Visual Mamba Network**](https://arxiv.org/pdf/2411.15941)".**
--- 
[![arXiv](https://img.shields.io/badge/Arxiv-2411.15941-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2411.15941) 
[![github](https://img.shields.io/github/stars/lewandofskee/MobileMamba.svg?style=social)](https://github.com/lewandofskee/MobileMamba)

[Haoyang He<sup>1*</sup>](https://scholar.google.com/citations?hl=zh-CN&user=8NfQv1sAAAAJ),
[Jiangning Zhang<sup>2*</sup>](https://zhangzjn.github.io),
[Yuxuan Cai<sup>3</sup>](https://scholar.google.com/citations?hl=zh-CN&user=J9lTFAUAAAAJ),
[Hongxu Chen<sup>1</sup>](https://scholar.google.com/citations?hl=zh-CN&user=uFT3YfMAAAAJ)
[Xiaobin Hu<sup>2</sup>](https://scholar.google.com/citations?hl=zh-CN&user=3lMuodUAAAAJ),

[Zhenye Gan<sup>2</sup>](https://scholar.google.com/citations?user=fa4NkScAAAAJ&hl=zh-CN),
[Yabiao Wang<sup>2</sup>](https://scholar.google.com/citations?user=xiK4nFUAAAAJ&hl=zh-CN),
[Chengjie Wang<sup>2</sup>](https://scholar.google.com/citations?hl=zh-CN&user=fqte5H4AAAAJ),
Yunsheng Wu<sup>2</sup>,
[Lei Xie<sup>1†</sup>](https://scholar.google.com/citations?hl=zh-CN&user=7ZZ_-m0AAAAJ)

<sup>1</sup>College of Control Science and Engineering, Zhejiang University, 
<sup>2</sup>Youtu Lab, Tencent,
<sup>3</sup>Huazhong University of Science and Technology
> **Abstract:** Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs. CNNs, with their local receptive fields, struggle to capture long-range dependencies, while Transformers, despite their global modeling capabilities, are limited by quadratic computational complexity in high-resolution scenarios. Recently, state-space models have gained popularity in the visual domain due to their linear computational complexity. Despite their low FLOPs, current lightweight Mamba-based models exhibit suboptimal throughput.
In this work, we propose the MobileMamba framework, which balances efficiency and performance. We design a three-stage network to enhance inference speed significantly. At a fine-grained level, we introduce the Multi-Receptive Field Feature Interaction MRFFI module, comprising the Long-Range Wavelet Transform-Enhanced Mamba WTE-Mamba, Efficient Multi-Kernel Depthwise Convolution MK-DeConv, and Eliminate Redundant Identity components. This module integrates multi-receptive field information and enhances high-frequency detail extraction. Additionally, we employ training and testing strategies to further improve performance and efficiency.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods which is maximum x21 faster than LocalVim on GPU. Extensive experiments on high-resolution downstream tasks demonstrate that MobileMamba surpasses current efficient models, achieving an optimal balance between speed and accuracy.


------
# Classification results
### Image Classification for [ImageNet-1K](https://www.image-net.org):
| Model                    | FLOPs | #Params | Resolution | Top-1 |                      Cfg                      |                        Log                         |                        Model                         |
|--------------------------|:-----:|:-------:|:----------:|:-----:|:---------------------------------------------:|:--------------------------------------------------:|:----------------------------------------------------:|
| MobileMamba-T2           | 255M  |  8.8M   | 192 x 192  | 71.5  | [cfg](configs/mobilemamba/mobilemamba_t2.py)  |  [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_T2/mobilemamba_t2.txt)  |  [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_T2/mobilemamba_t2.pth)  |
| MobileMamba-T2† | 255M  |  8.8M   | 192 x 192  | 76.9  | [cfg](configs/mobilemamba/mobilemamba_t2s.py) | [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_T2s/mobilemamba_t2s.txt) | [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_T2s/mobilemamba_t2s.pth) |
| MobileMamba-T4           | 413M  |  14.2M  | 192 x 192  | 76.1  | [cfg](configs/mobilemamba/mobilemamba_t4.py)  |  [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_T4/mobilemamba_t4.txt)  |  [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_T4/mobilemamba_t4.pth)  |
| MobileMamba-T4†          | 413M  |  14.2M  | 192 x 192  | 78.9  | [cfg](configs/mobilemamba/mobilemamba_t4s.py) | [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_T4s/mobilemamba_t4s.txt) | [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_T4s/mobilemamba_t4s.pth) |
| MobileMamba-S6           | 652M  |  15.0M  | 224 x 224  | 78.0  | [cfg](configs/mobilemamba/mobilemamba_s6.py)  |  [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_S6/mobilemamba_s6.txt)  |  [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_S6/mobilemamba_s6.pth)  |
| MobileMamba-S6†          | 652M  |  15.0M  | 224 x 224  | 80.7  | [cfg](configs/mobilemamba/mobilemamba_s6s.py) | [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_S6s/mobilemamba_s6s.txt) | [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_S6s/mobilemamba_s6s.pth) |
| MobileMamba-B1           | 1080M |  17.1M  | 256 x 256  | 79.9  | [cfg](configs/mobilemamba/mobilemamba_b1.py)  |  [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_B1/mobilemamba_b1.txt)  |  [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_B1/mobilemamba_b1.pth)  |
| MobileMamba-B1†          | 1080M |  17.1M  | 256 x 256  | 82.2  | [cfg](configs/mobilemamba/mobilemamba_b1s.py) | [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_B1s/mobilemamba_b1s.txt) | [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_B1s/mobilemamba_b1s.pth) |
| MobileMamba-B2           | 2427M |  17.1M  | 384 x 384  | 81.6  | [cfg](configs/mobilemamba/mobilemamba_b2.py)  |  [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_B2/mobilemamba_b2.txt)  |  [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_B2/mobilemamba_b2.pth)  |
| MobileMamba-B2†          | 2427M |  17.1M  | 384 x 384  | 83.3  | [cfg](configs/mobilemamba/mobilemamba_b2s.py) | [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_B2s/mobilemamba_b2s.txt) | [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_B2s/mobilemamba_b2s.pth) |
| MobileMamba-B4           | 4313M |  17.1M  | 512 x 512  | 82.5  | [cfg](configs/mobilemamba/mobilemamba_b4.py)  |  [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_B4/mobilemamba_b4.txt)  |  [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_B4/mobilemamba_b4.pth)  |
| MobileMamba-B4†          | 4313M |  17.1M  | 512 x 512  | 83.6  | [cfg](configs/mobilemamba/mobilemamba_b4s.py) | [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_B4s/mobilemamba_b4s.txt) | [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/MobileMamba_B4s/mobilemamba_b4s.pth) |

------
# Downstream Results
## Object Detection and Instant Segmentation Results
### Object Detection  and Instant Segmentation Performance Based on [Mask-RCNN](https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf) for [COCO2017](https://cocodataset.org):
| Backbone | AP<sup>b</sup> | AP<sup>b</sup><sub>50</sub> | AP<sup>b</sup><sub>75</sub> | AP<sup>b</sup><sub>S</sub> | AP<sup>b</sup><sub>M</sub> | AP<sup>b</sup><sub>L</sub> | AP<sup>m</sup> | AP<sup>m</sup><sub>50</sub> | AP<sup>m</sup><sub>75</sub> | AP<sup>m</sup><sub>S</sub> | AP<sup>m</sup><sub>M</sub> | AP<sup>m</sup><sub>L</sub> | #Params | FLOPs |                    Cfg                     |                    Log                     |                    Model                     |
|:--------:|:--------------:|:---------------------------:|:---------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:--------------:|:---------------------------:|:---------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-------:|:-----:|:------------------------------------------:|:------------------------------------------:|:--------------------------------------------:|
|  MobileMamba-B1  |      40.6      |            61.8             |            43.8             |            22.4            |            43.5            |            55.9            |      37.4      |            58.9             |            39.9             |            17.1            |            39.9            |            56.4            |  38.0M  | 178G  | [cfg](downstream/det/configs/mask_rcnn/mask-rcnn_mobilemamba_b1_fpn_1x_coco.py) | [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/det/maskrcnn.log) | [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/det/maskrcnn.pth) |

### Object Detection Performance Based on [RetinaNet](https://openaccess.thecvf.com/content_ICCV_2017/papers/Lin_Focal_Loss_for_ICCV_2017_paper.pdf) for [COCO2017](https://cocodataset.org):
| Backbone |  AP  | AP<sub>50</sub> | AP<sub>75</sub> | AP<sub>S</sub> | AP<sub>M</sub> | AP<sub>L</sub> | #Params | FLOPs |                     Cfg                     |                     Log                     |                     Model                     |
|:--------:|:----:|:---------------:|:---------------:|:--------------:|:--------------:|:--------------:|:-------:|:-----:|:-------------------------------------------:|:-------------------------------------------:|:---------------------------------------------:|
|  MobileMamba-B1  | 39.6 |      59.8       |      42.4       |      21.5      |      43.4      |      53.9      |  27.1M  | 151G  | [cfg](downstream/det/configs/retinanet/retinanet_mobilemamba_b1_fpn_1x_coco.py) | [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/det/retinanet.log) | [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/det/retinanet.pth) |

### Object Detection Performance Based on [SSDLite](https://openaccess.thecvf.com/content_ICCV_2019/papers/Howard_Searching_for_MobileNetV3_ICCV_2019_paper.pdf) for [COCO2017](https://cocodataset.org):
|      Backbone       |  AP  | AP<sub>50</sub> | AP<sub>75</sub> | AP<sub>S</sub> | AP<sub>M</sub> | AP<sub>L</sub> | #Params | FLOPs |                                      Cfg                                      |              Log               |                      Model                      |
|:-------------------:|:----:|:---------------:|:---------------:|:--------------:|:--------------:|:--------------:|:-------:|:-----:|:-----------------------------------------------------------------------------:|:------------------------------:|:-----------------------------------------------:|
|   MobileMamba-B1    | 24.0 |      39.5       |      24.0       |      3.1       |      23.4      |      46.9      |  18.0M  | 1.7G  |   [cfg](downstream/det/configs/ssd/ssdlite_mobilemamba_b1_8gpu_2lr_coco.py)   |   [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/det/ssdlite.log)   |   [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/det/ssdlite.pth)   |
| MobileMamba-B1-r512 | 29.5 |      47.7       |      30.4       |      8.9       |      35.0      |      47.0      |  18.0M  | 4.4G  | [cfg](downstream/det/configs/ssd/ssdlite_mobilemamba_b1_8gpu_2lr_512_coco.py) | [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/det/ssdlite_512.log) | [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/det/ssdlite_512.pth) |

## Semantic Segmentation Results
### Semantic Segmentation Based on [Semantic FPN](https://openaccess.thecvf.com/content_CVPR_2019/papers/Kirillov_Panoptic_Feature_Pyramid_Networks_CVPR_2019_paper.pdf) for [ADE20k](http://sceneparsing.csail.mit.edu/):
| Backbone | aAcc | mIoU | mAcc | #Params | FLOPs |                  Cfg                  |                  Log                  |                  Model                  |
|:--------:|:----:|:----:|:----:|:-------:|:-----:|:-------------------------------------:|:-------------------------------------:|:---------------------------------------:|
| MobileMamba-B4 | 79.9 | 42.5 | 53.7 |  19.8M  | 5.6G  | [cfg](downstream/seg/configs/sem_fpn/fpn_mobilemamba_b4-160k_ade20k-512x512.py) | [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/seg/fpn.log) | [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/seg/fpn.pth) |


### Semantic Segmentation Based on [DeepLabv3](https://arxiv.org/pdf/1706.05587.pdf) for [ADE20k](http://sceneparsing.csail.mit.edu/):
|    Backbone    | aAcc | mIoU | mAcc | #Params | FLOPs |                     Cfg                     |                     Log                     |                     Model                     |
|:--------------:|:----:|:----:|:----:|:-------:|:-----:|:-------------------------------------------:|:-------------------------------------------:|:---------------------------------------------:|
| MobileMamba-B4 | 76.3 | 36.6 | 47.1 |  23.4M  | 4.7G  | [cfg](downstream/seg/configs/deeplabv3/deeplabv3_mobilemamba_b4-80k_ade20k-512x512.py) | [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/seg/deeplabv3.log) | [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/seg/deeplabv3.pth) |


### Semantic Segmentation Based on [PSPNet](https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.pdf) for [ADE20k](http://sceneparsing.csail.mit.edu/):
| Backbone | aAcc | mIoU | mAcc | #Params | FLOPs |                   Cfg                    |                   Log                    |                   Model                    |
|:--------:|:----:|:----:|:----:|:-------:|:-----:|:----------------------------------------:|:----------------------------------------:|:------------------------------------------:|
| MobileMamba-B4 | 76.2 | 36.9 | 47.9 |  20.5M  | 4.5G  | [cfg](downstream/seg/configs/pspnet/pspnet_mobilemamba_b4-80k_ade20k-512x512.py) | [log](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/seg/pspnet.log) | [model](https://huggingface.co/Lewandofski/MobileMamba/blob/main/downstream/seg/pspnet.pth) |

------
# All Pretrained Weights and Logs

The model weights and log files for all classification and downstream tasks are available for download via [GoogleDrive](https://drive.google.com/file/d/1EDqWI6JKMaLZRSRWt9aM7VXaNvosStGE/view?usp=drive_link) and [Hugging Face](https://huggingface.co/Lewandofski/MobileMamba/tree/main)..

------
# Classification
## Environments
```shell
pip3 install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
pip3 install timm==0.6.5 tensorboardX einops torchprofile fvcore==0.1.5.post20221221 
cd model/lib_mamba/kernels/selective_scan && pip install . && cd ../../../..
git clone https://github.com/NVIDIA/apex && cd apex && pip3 install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ (optional)
```
  
## Prepare ImageNet-1K Dataset
Download and extract [ImageNet-1K](http://image-net.org/) dataset in the following directory structure:

```
β”œβ”€β”€ imagenet
    β”œβ”€β”€ train
        β”œβ”€β”€ n01440764
            β”œβ”€β”€ n01440764_10026.JPEG
            β”œβ”€β”€ ...
        β”œβ”€β”€ ...
    β”œβ”€β”€ train.txt (optional)
    β”œβ”€β”€ val
        β”œβ”€β”€ n01440764
            β”œβ”€β”€ ILSVRC2012_val_00000293.JPEG
            β”œβ”€β”€ ...
        β”œβ”€β”€ ...
    └── val.txt (optional)
```

## Test
Test with 8 GPUs in one node:

<details>
<summary>
MobileMamba-T2
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_t2 -m test model.model_kwargs.checkpoint_path=weights/MobileMamba_T2/mobilemamba_t2.pth
```
This should give `Top-1: 73.638 (Top-5: 91.422)` 
</details>

<details>
<summary>
MobileMamba-T2†
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_t2s -m test model.model_kwargs.checkpoint_path=weights/MobileMamba_T2s/mobilemamba_t2s.pth
```
This should give `Top-1: 76.934 (Top-5: 93.100)` 
</details>

<details>
<summary>
MobileMamba-T4
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_t4 -m test model.model_kwargs.checkpoint_path=weights/MobileMamba_T4/mobilemamba_t4.pth
```
This should give `Top-1: 76.086 (Top-5: 92.772)` 
</details>

<details>
<summary>
MobileMamba-T4†
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_t4s -m test model.model_kwargs.checkpoint_path=weights/MobileMamba_T4s/mobilemamba_t4s.pth
```
This should give `Top-1: 78.914 (Top-5: 94.160)` 
</details>

<details>
<summary>
MobileMamba-S6
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_s6 -m test model.model_kwargs.checkpoint_path=weights/MobileMamba_S6/mobilemamba_s6.pth
```
This should give `Top-1: 78.002 (Top-5: 93.992)` 
</details>

<details>
<summary>
MobileMamba-S6†
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_s6s -m test model.model_kwargs.checkpoint_path=weights/MobileMamba_S6s/mobilemamba_s6s.pth
```
This should give `Top-1: 80.742 (Top-5: 95.182)` 
</details>

<details>
<summary>
MobileMamba-B1
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_b1 -m test model.model_kwargs.checkpoint_path=weights/MobileMamba_B1/mobilemamba_b1.pth
```
This should give `Top-1: 79.948 (Top-5: 94.924)` 
</details>

<details>
<summary>
MobileMamba-B1†
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_b1s -m test model.model_kwargs.checkpoint_path=weights/MobileMamba_B1s/mobilemamba_b1s.pth
```
This should give `Top-1: 82.234 (Top-5: 95.872)` 
</details>

<details>
<summary>
MobileMamba-B2
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_b2 -m test model.model_kwargs.checkpoint_path=weights/MobileMamba_B2/mobilemamba_b2.pth
```
This should give `Top-1: 81.624 (Top-5: 95.890)` 
</details>

<details>
<summary>
MobileMamba-B2†
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_b2s -m test model.model_kwargs.checkpoint_path=weights/MobileMamba_B2s/mobilemamba_b2s.pth
```
This should give `Top-1: 83.260 (Top-5: 96.438)` 
</details>

<details>
<summary>
MobileMamba-B4
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_b4 -m test model.model_kwargs.checkpoint_path=weights/MobileMamba_B4/mobilemamba_b4.pth
```
This should give `Top-1: 82.496 (Top-5: 96.252)` 
</details>

<details>
<summary>
MobileMamba-B4†
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_b4s -m test model.model_kwargs.checkpoint_path=weights/MobileMamba_B4s/mobilemamba_b4s.pth
```
This should give `Top-1: 83.644 (Top-5: 96.606)` 
</details>


## Train
Train with 8 GPUs in one node:

<details>
<summary>
MobileMamba-T2
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_t2 -m train
```
</details>

<details>
<summary>
MobileMamba-T2†
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_t2s -m train
```
</details>

<details>
<summary>
MobileMamba-T4
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_t4 -m train
```
</details>

<details>
<summary>
MobileMamba-T4†
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_t4s -m train
```
</details>

<details>
<summary>
MobileMamba-S6
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_s6 -m train
```
</details>

<details>
<summary>
MobileMamba-S6†
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_s6s -m train
```
</details>

<details>
<summary>
MobileMamba-B1
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_b1 -m train
```
</details>

<details>
<summary>
MobileMamba-B1†
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_b1s -m train
```
</details>

<details>
<summary>
MobileMamba-B2
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_b2 -m train
```
</details>

<details>
<summary>
MobileMamba-B2†
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_b2s -m train
```
</details>

<details>
<summary>
MobileMamba-B4
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_b4 -m train
```
</details>

<details>
<summary>
MobileMamba-B4†
</summary>

```
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --use_env run.py -c configs/mobilemamba/mobilemamba_b4s -m train
```
</details>

------
# Down-Stream Tasks
## Environments
```shell
pip3 install terminaltables pycocotools prettytable xtcocotools
pip3 install mmpretrain==1.2.0 mmdet==3.3.0 mmsegmentation==1.2.2
pip3 install mmcv==2.1.0 -f https://download.openmmlab.com/mmcv/dist/cu118/torch2.1/index.html
cd det/backbones/lib_mamba/kernels/selective_scan && pip install . && cd ../../../..
```
## Prepare COCO and ADE20k Dataset
Download and extract [COCO2017](https://cocodataset.org) and [ADE20k](http://sceneparsing.csail.mit.edu/) dataset in the following directory structure:

```
downstream
β”œβ”€β”€ det
β”œβ”€β”€β”€β”€ data
β”‚   β”œβ”€β”€β”€β”€ coco
β”‚   β”‚   β”œβ”€β”€β”€β”€ annotations
β”‚   β”‚   β”œβ”€β”€β”€β”€ train2017
β”‚   β”‚   β”œβ”€β”€β”€β”€ val2017
β”‚   β”‚   β”œβ”€β”€β”€β”€ test2017
β”œβ”€β”€ seg
β”œβ”€β”€β”€β”€ data
β”‚   β”œβ”€β”€β”€β”€ ade
β”‚   β”‚   β”œβ”€β”€β”€β”€ ADEChallengeData2016
β”‚   β”‚   β”œβ”€β”€β”€β”€β”€β”€β”€β”€ annotations
β”‚   β”‚   β”œβ”€β”€β”€β”€β”€β”€β”€β”€ images
```

## Object Detection
<details>
<summary>
Mask-RCNN
</summary>

#### Train:

```
CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/dist_train.sh configs/mask_rcnn/mask-rcnn_mobilemamba_b1_fpn_1x_coco.py 4
```

#### Test:

```
CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/dist_test.sh configs/mask_rcnn/mask-rcnn_mobilemamba_b1_fpn_1x_coco.py ../../weights/downstream/det/maskrcnn.pth 4
```
</details>

<details>
<summary>
RetinaNet
</summary>

#### Train:

```
CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/dist_train.sh configs/retinanet/retinanet_mobilemamba_b1_fpn_1x_coco.py 4
```

#### Test:

```
CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/dist_test.sh configs/retinanet/retinanet_mobilemamba_b1_fpn_1x_coco.py ../../weights/downstream/det/retinanet.pth 4
```
</details>

<details>
<summary>
SSDLite
</summary>

#### Train with 320 x 320 resolution:

```
./tools/dist_train.sh configs/ssd/ssdlite_mobilemamba_b1_8gpu_2lr_coco.py 8
```

#### Test with 320 x 320 resolution:

```
./tools/dist_test.sh configs/ssd/ssdlite_mobilemamba_b1_8gpu_2lr_coco.py ../../weights/downstream/det/ssdlite.pth 8
```

#### Train with 512 x 512 resolution:
```
./tools/dist_train.sh configs/ssd/ssdlite_mobilemamba_b1_8gpu_2lr_512_coco.py 8
```

#### Test with 512 x 512 resolution:

```
./tools/dist_test.sh configs/ssd/ssdlite_mobilemamba_b1_8gpu_2lr_512_coco.py ../../weights/downstream/det/ssdlite_512.pth 8
```
</details>


## Semantic Segmentation
<details>
<summary>
DeepLabV3
</summary>

#### Train:

```
CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/dist_train.sh configs/deeplabv3/deeplabv3_mobilemamba_b4-80k_ade20k-512x512.py 4
```

#### Test:

```
CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/dist_test.sh configs/deeplabv3/deeplabv3_mobilemamba_b4-80k_ade20k-512x512.py ../../weights/downstream/seg/deeplabv3.pth 4
```
</details>

<details>
<summary>
Semantic FPN
</summary>

#### Train:

```
CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/dist_train.sh configs/sem_fpn/fpn_mobilemamba_b4-160k_ade20k-512x512.py 4
```

#### Test:

```
CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/dist_test.sh configs/sem_fpn/fpn_mobilemamba_b4-160k_ade20k-512x512.py ../../weights/downstream/seg/fpn.pth 4
```
</details>

<details>
<summary>
PSPNet
</summary>

#### Train:

```
CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/dist_train.sh configs/pspnet/pspnet_mobilemamba_b4-80k_ade20k-512x512.py 4
```

#### Test:

```
CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/dist_test.sh configs/pspnet/pspnet_mobilemamba_b4-80k_ade20k-512x512.py ../../weights/downstream/seg/pspnet.pth 4
```
</details>


# Citation
If our work is helpful for your research, please consider citing:
```angular2html
@article{mobilemamba,
  title={MobileMamba: Lightweight Multi-Receptive Visual Mamba Network},
  author={Haoyang He and Jiangning Zhang and Yuxuan Cai and Hongxu Chen and Xiaobin Hu and Zhenye Gan and Yabiao Wang and Chengjie Wang and Yunsheng Wu and Lei Xie},
  journal={arXiv preprint arXiv:2411.15941},
  year={2024}
}
```

# Acknowledgements
We thank but not limited to following repositories for providing assistance for our research:
- [EMO](https://github.com/zhangzjn/EMO)
- [EfficientViT](https://github.com/microsoft/Cream/tree/main/EfficientViT)
- [VMamba](https://github.com/MzeroMiko/VMamba)
- [TIMM](https://github.com/rwightman/pytorch-image-models)
- [MMDetection](https://github.com/open-mmlab/mmdetection)
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation)