% clear all model={'T_h1_m1';'S_h1_m1';'T_h1_m2';'S_h1_m2';'T_h2_m1';'S_h2_m1';}; nmb_of_models=length(model); rtmax=[]; rtmin=[]; rtmed=[]; rtmean=[]; nmb_of_100rt_module=[]; nmb_of_100rt=[]; stat_100rt=[]; for ii=1:nmb_of_models md=char(model(ii)); reportname1 = sprintf('Model_%s/Training_Evaluation/%s_1_performance.mat',md,md); load(reportname1) rtmax=[rtmax;max(pstvrt_model,[],'all')]; rtmin=[rtmin;min(pstvrt_model,[],'all')]; rtmed=[rtmed;median(pstvrt_model(:),'all')]; rtmean=[rtmean;mean(pstvrt_model(:),'all')]; aa=squeeze(pstvrt_model(2,:,1)); bb=squeeze(pstvrt_model(2,:,2)); cc=[aa,bb]; idx=(cc==100); nmb_of_100rt_module=[nmb_of_100rt_module;sum(1*idx)]; % rt100=(sum(idx*1)-1)/length(cc); dd=[squeeze(pstvrt_model(:,:,1));squeeze(pstvrt_model(:,:,2))]; idx2=(dd==100); nmb_of_100rt=[nmb_of_100rt;sum(1*idx)]; stat_100rt=[stat_100rt;[sum(1*idx2,'all'),sum(1*idx)]]; end %% perfmn=table(model,rtmin,rtmean,rtmed,rtmax,stat_100rt)