nmb_of_labels=1000; nmb_of_labs_per_module=25; nmb_of_modules=(nmb_of_labels/nmb_of_labs_per_module); relative_lab_seq=1:nmb_of_labs_per_module; nmb_of_subsets=2; patch=0; parfor module=1:nmb_of_modules m_label_ids=[]; m_labels=[]; m_data=[]; m_label_table=[relative_lab_seq;relative_lab_seq+(module-1)*nmb_of_labs_per_module]; for imgnt1kdataset=1:10 % change the path to the folder containing the ImageNet-1k mat % files reportname1 = sprintf('/work/mathbiology/lheath2/data/imagenet1k/mat/train_data_batch_%d.mat', imgnt1kdataset); temp_lpad=load(reportname1,'data','labels') % data=temp_lpad.data; labels=temp_lpad.labels; pos_seq=1:length(labels); for labs=relative_lab_seq idx=(labels==(labs+(module-1)*nmb_of_labs_per_module)); aa=pos_seq(idx); bb=[0*aa+imgnt1kdataset;aa;labels(idx)]; m_label_ids=[m_label_ids, bb]; m_labels=[m_labels,0*aa+labs]; m_data=[m_data;data(idx,:)]; end end nmb_dt=length(m_labels); set_lng=fix(nmb_dt/nmb_of_subsets); for subset=1:nmb_of_subsets if subset