% clear all proto_model={'T_h1_m1';'S_h1_m1';'T_h1_m2';'S_h1_m2';'T_h2_m1';'S_h2_m1'}; nmb_of_proto_models=length(proto_model); featured_model={'model_1';'model_2';'model_3';'model_4';'model_5';'model_6'}; [nmb_of_ft_models,~]=size(featured_model); for ii=1:nmb_of_proto_models md=char(proto_model(ii)); %%%%%%% nmb_of_image_set=zeros(1,10); pr_set=zeros(1,10); top_1_set=zeros(1,10); model_accuracy_comparison=zeros(2,nmb_of_ft_models); for fm=1:nmb_of_ft_models for imgnt1kdataset=1:10 reportname1 = sprintf('Model_%s/Evaluation_Data/Model_Accuracy/training_data_batch_%d_feature_module_performance_%s_var.mat',... md,imgnt1kdataset, md); aa=sprintf('classification_data_%d',fm); bb=load(reportname1,aa); c_data=bb.(aa); true_lab=c_data(:,1); pred_lab=c_data(:,2); likelyhood=c_data(:,3); top_1_majority=c_data(1,3); nmb_of_images=length(true_lab); nmb_of_image_set(imgnt1kdataset)=nmb_of_images; idx=(abs(true_lab-pred_lab)==0); aa=sum(1*idx); pr=aa/nmb_of_images*100; pr_set(imgnt1kdataset)=pr; %%%%%%%% Top-1 rate %%%%%%%%%%% bb=likelyhood(idx); cc=length(bb); idx1=(bb==top_1_majority); aa=sum(idx1*1); top_1=aa/cc*100; top_1_set(imgnt1kdataset)=top_1; end model_accuracy_comparison(1,fm)=nmb_of_image_set*pr_set'/sum(nmb_of_image_set); model_accuracy_comparison(2,fm)=nmb_of_image_set*top_1_set'/sum(nmb_of_image_set); % assignin('base',featured_model(fm), model_accuracy_comparison') end assignin('base',md, model_accuracy_comparison') end %% tb1=table(featured_model,T_h1_m1,S_h1_m1,T_h1_m2,S_h1_m2,T_h2_m1,S_h2_m1) %% table(featured_model,T_h1_m1,T_h1_m2,T_h2_m1) table(featured_model,S_h1_m1,S_h1_m2,S_h2_m1) %% for fm=1:nmb_of_ft_models %%%%%%% nmb_of_image_set=zeros(1,10); pr_set=zeros(1,10); top_1_set=zeros(1,10); model_accuracy_comparison_2=zeros(2,nmb_of_ft_models); for ii=1:nmb_of_proto_models md=char(proto_model(ii)); for imgnt1kdataset=1:10 reportname1 = sprintf('Model_%s/Evaluation_Data/Model_Accuracy/training_data_batch_%d_feature_module_performance_%s_var.mat',... md,imgnt1kdataset, md); aa=sprintf('classification_data_%d',fm); bb=load(reportname1,aa); c_data=bb.(aa); true_lab=c_data(:,1); pred_lab=c_data(:,2); likelyhood=c_data(:,3); top_1_majority=c_data(1,3); nmb_of_images=length(true_lab); nmb_of_image_set(imgnt1kdataset)=nmb_of_images; idx=(abs(true_lab-pred_lab)==0); aa=sum(1*idx); pr=aa/nmb_of_images*100; pr_set(imgnt1kdataset)=pr; %%%%%%%% Top-1 rate %%%%%%%%%%% bb=likelyhood(idx); cc=length(bb); idx1=(bb==top_1_majority); aa=sum(idx1*1); top_1=aa/cc*100; top_1_set(imgnt1kdataset)=top_1; end model_accuracy_comparison_2(1,ii)=nmb_of_image_set*pr_set'/sum(nmb_of_image_set); model_accuracy_comparison_2(2,ii)=nmb_of_image_set*top_1_set'/sum(nmb_of_image_set); end assignin('base',char(featured_model(fm)), round(model_accuracy_comparison_2,3)') end tb2=table(proto_model,model_1,model_2,model_3,model_4,model_5,model_6)