|
|
|
|
|
model={'T_h1_m1';'S_h1_m1';'T_h1_m2';'S_h1_m2';'T_h2_m1';'S_h2_m1';}; |
|
nmb_of_models=length(model); |
|
rtmax=[]; |
|
rtmin=[]; |
|
rtmed=[]; |
|
rtmean=[]; |
|
nmb_of_100rt_module=[]; |
|
nmb_of_100rt=[]; |
|
stat_100rt=[]; |
|
for ii=1:nmb_of_models |
|
md=char(model(ii)); |
|
reportname1 = sprintf('Model_%s/Training_Evaluation/%s_1_performance.mat',md,md); |
|
load(reportname1) |
|
|
|
rtmax=[rtmax;max(pstvrt_model,[],'all')]; |
|
rtmin=[rtmin;min(pstvrt_model,[],'all')]; |
|
rtmed=[rtmed;median(pstvrt_model(:),'all')]; |
|
rtmean=[rtmean;mean(pstvrt_model(:),'all')]; |
|
|
|
aa=squeeze(pstvrt_model(2,:,1)); |
|
bb=squeeze(pstvrt_model(2,:,2)); |
|
cc=[aa,bb]; |
|
idx=(cc==100); |
|
nmb_of_100rt_module=[nmb_of_100rt_module;sum(1*idx)]; |
|
|
|
dd=[squeeze(pstvrt_model(:,:,1));squeeze(pstvrt_model(:,:,2))]; |
|
idx2=(dd==100); |
|
nmb_of_100rt=[nmb_of_100rt;sum(1*idx)]; |
|
stat_100rt=[stat_100rt;[sum(1*idx2,'all'),sum(1*idx)]]; |
|
end |
|
|
|
|
|
perfmn=table(model,rtmin,rtmean,rtmed,rtmax,stat_100rt) |
|
|