File size: 3,790 Bytes
62615d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
function []=fun_spoke_plot(vect_image,true_label,Ws,bs,spr,Wt,bt,tpr,nmb_of_labels)
%
%
lb=true_label;
nml=nmb_of_labels;
nn=3;
clr=colormap(cool(nn*(nml+1)));
lbnm={'a','b','c','d','e','f','g','h','i','j','k','l','m','n',...
'o','p','q','r','s','t','u','v','w','x','y','z'};
gy=.33;
grdcl='w';
grlwt=2;
msz=4;
redge=1.1;
figure(1)
hold off
subplot(1,2,1)
prediction=fun_prediction(vect_image,Ws,bs);
predicted=prediction.A_end;
[~,nmd]=size(predicted);
offst=.07;
%%%%%%%%%%%%%%%
inc=2*pi/nml;
tht=(0:(nml-1))*inc;
A=zeros(2,nmb_of_labels);
for ii=1:nml %tht
A(:,ii)=[tht(ii);1];
end
radii=1./abs(prediction.predicted.distance+offst);
%%%%%%%%%%%%%%%
pi_pt=zeros(2,nmd);
for mm=1:nmd
pi_pt(:,mm)=A*predicted(:,mm);
end
aa=pi_pt(1,:);
theta_all=aa(:);
% aa=pi_pt(2,:);
% rho_all=aa(:);
%%%%%%%%%%%%%%%
% polarplot(twopi,unitclc,'linewidth',1,'Color','w');
% hold on
for kk=1:nml
idx=(lb==kk);
theta=theta_all(idx);
rho=radii(idx);
% rho=rho_all(idx);
p=polarplot(theta,rho/max(rho));
hold on
p.Marker = 'square';
p.MarkerSize = msz;
p.LineStyle = "none";
p.Color = clr(nn*kk,:);
p.MarkerFaceColor = clr(nn*kk,:);
end
ax = gca;
ax.RTickLabel = {};
ax.ThetaTick = rad2deg(tht);
ax.ThetaTickLabel = lbnm;
axis([-inf, inf, 0,redge])
set(ax,'Color',[gy gy gy])
set(ax,'GridColor',grdcl,'LineWidth',grlwt)
% title("SGD - trained Model (" + SGDpr*epoch_size_SGD/epoch_sz_GDT + "%)",'fontsize',14)
title("SGD - trained Model (" + round(spr,2) + "%)",'fontsize',14)
%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot(1,2,2)
prediction=fun_prediction(vect_image,Wt,bt);
predicted=prediction.A_end;
[~,nmd]=size(predicted);
% offst=.05;
%%%%%%%%%%%%%%%
inc=2*pi/nml;
tht=(0:(nml-1))*inc;
A=zeros(2,nmb_of_labels);
for ii=1:nml %tht
A(:,ii)=[tht(ii);1];
end
radii=1./abs(prediction.predicted.distance+offst);
%%%%%%%%%%%%%%%
pi_pt=zeros(2,nmd);
for mm=1:nmd
pi_pt(:,mm)=A*predicted(:,mm);
end
aa=pi_pt(1,:);
theta_all=aa(:);
% aa=pi_pt(2,:);
% rho_all=aa(:);
%%%%%%%%%%%%%%%
% polarplot(twopi,unitclc,'linewidth',1,'Color','w');
% hold on
for kk=1:nml
idx=(lb==kk);
theta=theta_all(idx);
rho=radii(idx);
% rho=rho_all(idx);
p=polarplot(theta,rho/max(rho));
hold on
p.Marker = 'square';
p.MarkerSize = msz;
p.LineStyle = "none";
p.Color = clr(nn*kk,:);
p.MarkerFaceColor = clr(nn*kk,:);
end
ax = gca;
ax.RTickLabel = {};
ax.ThetaTick = rad2deg(tht);
ax.ThetaTickLabel = lbnm;
axis([-inf, inf, 0,redge])
set(ax,'Color',[gy gy gy])
set(ax,'GridColor',grdcl,'LineWidth',grlwt)
% title('Fully Trained Model (100%)','fontsize',14)
title("GDT - trained Model (" + tpr + "%)",'fontsize',14)
set(gcf,'Position',[10 80 900 440])
% set(gcf, 'MenuBar', 'None')
% sgtitle('Spoke-Plot for Training', 'fontsize', 16)
sgtitle('Confusion Wheel for Training', 'fontsize', 16)
function out=fun_prediction(vect_image,W, b)
%
%
nmb_of_hidden_layers=length(fieldnames(W))-1;
W1=W.LayerName1;
W2=W.LayerName2;
b1=b.LayerName1;
b2=b.LayerName2;
a_0=vect_image;
% true_label=data_load.labels;
% dtsz=length(true_label);
nmb_labels=length(b2);
z1=W1*a_0+b1;
[a1,~]=fun_activation(z1);
z2=W2*a1+b2;
if nmb_of_hidden_layers==1
[a2,~]=fun_softmax(z2);
predicted_vector=a2;
else
W3=W.LayerName3;
b3=b.LayerName3;
nmb_labels=length(b3);
[a2,~]=fun_activation(z2);
z3=W3*a2+b3;
[a3,~]=fun_softmax(z3);
predicted_vector=a3;
end
out.A_end=predicted_vector;
out.predicted=fun_predicted_vector_2_label(predicted_vector,nmb_labels);
end
end |