File size: 3,552 Bytes
62615d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
% clear all
proto_model={'T_h1_m1';'S_h1_m1';'T_h1_m2';'S_h1_m2';'T_h2_m1';'S_h2_m1'};
nmb_of_proto_models=length(proto_model);
featured_model={'model_1';'model_2';'model_3';'model_4';'model_5';'model_6'};
[nmb_of_ft_models,~]=size(featured_model);
for ii=1:nmb_of_proto_models
md=char(proto_model(ii));
%%%%%%%
nmb_of_image_set=zeros(1,10);
pr_set=zeros(1,10);
top_1_set=zeros(1,10);
model_accuracy_comparison=zeros(2,nmb_of_ft_models);
for fm=1:nmb_of_ft_models
for imgnt1kdataset=1:10
reportname1 = sprintf('Model_%s/Evaluation_Data/Model_Accuracy/training_data_batch_%d_feature_module_performance_%s_var.mat',...
md,imgnt1kdataset, md);
aa=sprintf('classification_data_%d',fm);
bb=load(reportname1,aa);
c_data=bb.(aa);
true_lab=c_data(:,1);
pred_lab=c_data(:,2);
likelyhood=c_data(:,3);
top_1_majority=c_data(1,3);
nmb_of_images=length(true_lab);
nmb_of_image_set(imgnt1kdataset)=nmb_of_images;
idx=(abs(true_lab-pred_lab)==0);
aa=sum(1*idx);
pr=aa/nmb_of_images*100;
pr_set(imgnt1kdataset)=pr;
%%%%%%%% Top-1 rate %%%%%%%%%%%
bb=likelyhood(idx);
cc=length(bb);
idx1=(bb==top_1_majority);
aa=sum(idx1*1);
top_1=aa/cc*100;
top_1_set(imgnt1kdataset)=top_1;
end
model_accuracy_comparison(1,fm)=nmb_of_image_set*pr_set'/sum(nmb_of_image_set);
model_accuracy_comparison(2,fm)=nmb_of_image_set*top_1_set'/sum(nmb_of_image_set);
% assignin('base',featured_model(fm), model_accuracy_comparison')
end
assignin('base',md, model_accuracy_comparison')
end
%%
tb1=table(featured_model,T_h1_m1,S_h1_m1,T_h1_m2,S_h1_m2,T_h2_m1,S_h2_m1)
%%
table(featured_model,T_h1_m1,T_h1_m2,T_h2_m1)
table(featured_model,S_h1_m1,S_h1_m2,S_h2_m1)
%%
for fm=1:nmb_of_ft_models
%%%%%%%
nmb_of_image_set=zeros(1,10);
pr_set=zeros(1,10);
top_1_set=zeros(1,10);
model_accuracy_comparison_2=zeros(2,nmb_of_ft_models);
for ii=1:nmb_of_proto_models
md=char(proto_model(ii));
for imgnt1kdataset=1:10
reportname1 = sprintf('Model_%s/Evaluation_Data/Model_Accuracy/training_data_batch_%d_feature_module_performance_%s_var.mat',...
md,imgnt1kdataset, md);
aa=sprintf('classification_data_%d',fm);
bb=load(reportname1,aa);
c_data=bb.(aa);
true_lab=c_data(:,1);
pred_lab=c_data(:,2);
likelyhood=c_data(:,3);
top_1_majority=c_data(1,3);
nmb_of_images=length(true_lab);
nmb_of_image_set(imgnt1kdataset)=nmb_of_images;
idx=(abs(true_lab-pred_lab)==0);
aa=sum(1*idx);
pr=aa/nmb_of_images*100;
pr_set(imgnt1kdataset)=pr;
%%%%%%%% Top-1 rate %%%%%%%%%%%
bb=likelyhood(idx);
cc=length(bb);
idx1=(bb==top_1_majority);
aa=sum(idx1*1);
top_1=aa/cc*100;
top_1_set(imgnt1kdataset)=top_1;
end
model_accuracy_comparison_2(1,ii)=nmb_of_image_set*pr_set'/sum(nmb_of_image_set);
model_accuracy_comparison_2(2,ii)=nmb_of_image_set*top_1_set'/sum(nmb_of_image_set);
end
assignin('base',char(featured_model(fm)), round(model_accuracy_comparison_2,3)')
end
tb2=table(proto_model,model_1,model_2,model_3,model_4,model_5,model_6)
|