File size: 7,825 Bytes
b05fe64
 
 
 
 
 
 
 
d574087
b05fe64
d574087
b05fe64
 
5385203
dc38313
6dc3421
 
5385203
b05fe64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9b22af
556797f
a9b22af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
license: creativeml-openrail-m
library_name: diffusers
---

## Model Details
<!-- Provide the basic links for the model. -->

- **Repository:** [https://github.com/LetterLiGo/SafeGen_CCS2024](https://github.com/LetterLiGo/SafeGen_CCS2024)
- **Paper [SafeGen: Mitigating Sexually Explicit Content Generation in Text-to-Image Models](https://arxiv.org/abs/2404.06666):** To appear in ACM CCS 2024.
- **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based.
- **Cite as:**

      @inproceedings{li2024safegen,
        author       = {Li, Xinfeng and Yang, Yuchen and Deng, Jiangyi and Yan, Chen and Chen, Yanjiao and Ji, Xiaoyu and Xu, Wenyuan},
        title        = {{SafeGen: Mitigating Sexually Explicit Content Generation in Text-to-Image Models}},
        booktitle    = {Proceedings of the 2024 {ACM} {SIGSAC} Conference on Computer and Communications Security (CCS)},
        year         = {2024},
      }

# How to use the pretrained weights for inference?
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Bash Script
```Bash
#!/bin/bash
safety_config="MAX"
prompts_path="<path-to-prompts>"
model_name="SafeGen_SLD_max"
image_nums=1
evaluation_folder="<path-to-save-images>/"${safety_config}_${image_nums}
model_version="<path-to-SafeGen-Pretrained-Weights>"

python3 SafeGen_SLD_inference.py \
       --model_name ${model_name} \
       --model_version ${model_version} \
       --prompts_path ${prompts_path} \
       --save_path ${evaluation_folder} \
       --safety_config ${safety_config} \
       --num_samples ${image_nums} \
       --from_case 0
```

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

### Python Script

```python
'''
@filename: SafeGen_SLD_inference.py
@author: Xinfeng Li
@function: SafeGen can be integrated seamlessly with text-dependent defenses, such as Safe Latent Diffusion (Schramowski et al., CVPR 2023).
'''
from diffusers import StableDiffusionPipelineSafe
from diffusers.pipelines.stable_diffusion_safe import SafetyConfig
import argparse
import pandas as pd
import os
import torch
from PIL import Image

device="cuda"

def image_grid(imgs, rows=2, cols=3):
    w, h = imgs[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid

row, col = 2, 3

def generate_images(model_name, prompts_path, save_path, device='cuda:0', safety_config="MAX", guidance_scale = 7.5, from_case=0, num_samples=10, model_version="AIML-TUDA/stable-diffusion-safe"):
    '''
    Function to generate images from diffusers code
    
    The program requires the prompts to be in a csv format with headers 
        1. 'case_number' (used for file naming of image)
        2. 'prompt' (the prompt used to generate image)
        3. 'seed' (the inital seed to generate gaussion noise for diffusion input)
    
    Parameters
    ----------
    model_name : str
        name of the model to load.
    prompts_path : str
        path for the csv file with prompts and corresponding seeds.
    save_path : str
        save directory for images.
    device : str, optional
        device to be used to load the model. The default is 'cuda:0'.
    num_samples : int, optional
        number of samples generated per prompt. The default is 10.
    from_case : int, optional
        The starting offset in csv to generate images. The default is 0.

    Returns
    -------
    None.
    '''
    pipeline = StableDiffusionPipelineSafe.from_pretrained(model_version)
    print(pipeline.safety_concept)
    pipeline = pipeline.to(device)

    df = pd.read_csv(prompts_path)

    folder_path = f'{save_path}/{model_name}'
    os.makedirs(folder_path, exist_ok=True)

    for _, row in df.iterrows():
        prompt = [str(row.prompt)]*num_samples
        case_number = row.case_number
        if case_number<from_case:
            continue
        
        generator = torch.Generator("cuda").manual_seed(int(row.random_seed))
        if safety_config == "MAX":
            out_images = pipeline(prompt=prompt, generator=generator, **SafetyConfig.MAX).images
        elif safety_config == "WEAK":
            out_images = pipeline(prompt=prompt, generator=generator, **SafetyConfig.WEAK).images
        elif safety_config == "STRONG":
            out_images = pipeline(prompt=prompt, generator=generator, **SafetyConfig.STRONG).images
        elif safety_config == "MEDIUM":
            out_images = pipeline(prompt=prompt, generator=generator, **SafetyConfig.MEDIUM).images
    
        for num, im in enumerate(out_images):
            im.save(f"{folder_path}/{case_number}_{num}.png")

if __name__=='__main__':
    parser = argparse.ArgumentParser(
                    prog = 'generateImages',
                    description = 'Generate Images using Diffusers Code')
    parser.add_argument('--model_name', help='name of model', type=str, required=True)
    parser.add_argument('--model_version', help='path of model', type=str, required=False)
    parser.add_argument('--prompts_path', help='path to csv file with prompts', type=str, required=True)
    parser.add_argument('--save_path', help='folder where to save images', type=str, required=True)
    parser.add_argument('--device', help='cuda device to run on', type=str, required=False, default='cuda:0')
    parser.add_argument('--guidance_scale', help='guidance to run eval', type=float, required=False, default=7.5)
    parser.add_argument('--image_size', help='image size used to train', type=int, required=False, default=512)
    parser.add_argument('--from_case', help='continue generating from case_number', type=int, required=False, default=0)
    parser.add_argument('--num_samples', help='number of samples per prompt', type=int, required=False, default=1)
    parser.add_argument('--ddim_steps', help='ddim steps of inference used to train', type=int, required=False, default=100)
    parser.add_argument('--safety_config', help='safety level [WEAK, MEDIUM, STRONG, MAX]', type=str, required=True, default="MAX")
    args = parser.parse_args()
    
    model_name = args.model_name
    prompts_path = args.prompts_path
    save_path = args.save_path
    device = args.device
    num_samples= args.num_samples
    from_case = args.from_case
    safety_config = args.safety_config
    model_version = args.model_version
    
    generate_images(model_name, prompts_path, save_path, device=device, safety_config=safety_config,
                    num_samples=num_samples,from_case=from_case, model_version=model_version)
```

## If you want to learn about SafeGen's capability without the integration of an external safety filter.

You can comment on the run_safety_checker function used in Step 9. This code can be found in 
```Bash
<Your_conda_env>/lib/python3.8/site-packages/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py
```

```Python
# 8. Post-processing
  image = self.decode_latents(latents)

# 9. Run safety checker
  # image, has_nsfw_concept, flagged_images = self.run_safety_checker(
  #     image, device, prompt_embeds.dtype, enable_safety_guidance
  # )
has_nsfw_concept = None; flagged_images = None

```