PPO-LunarLander-v2 / config.json
LeKyks1's picture
Upload PPO LunarLander-v2 trained agent
26592ba verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b6aaa122dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b6aaa122e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b6aaa122ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b6aaa122f80>", "_build": "<function ActorCriticPolicy._build at 0x7b6aaa123010>", "forward": "<function ActorCriticPolicy.forward at 0x7b6aaa1230a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b6aaa123130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b6aaa1231c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b6aaa123250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b6aaa1232e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b6aaa123370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b6aaa123400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b6aaa2c2680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707156835089403259, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObjKj0f/au5oHWQOVy3mjRZEx26GAaruAAAgD8AAIA/MySfvMNtcLoNV8u6zx/pth8kcztCeug5AACAPwAAgD+NMaq9XI9PuikuiLvqWfW2qW2BO0bSnzoAAIA/AACAP7M5pr1IV4q61n7rOh3AqDdfZ8e66kWYuQAAgD8AAIA/mpdQPK4Lh7oJ5r877SEMOEEcATuaQEG2AACAPwAAgD9Nxwg9XKN0unsEJ7cGsC2yYcRbOaEZRDYAAIA/AACAP80cMru4frK55nPyuYl0cbWfYSQ7dhUQOQAAgD8AAIA/GuwFvVu6lj9Lsbi9CsqjvmKlor3v45C9AAAAAAAAAADN9As7j6ZIuqtgCTo8lTI0/RNiu3CQILkAAIA/AACAPzNjvTpcQ1a6YzdIOrO9BLRODl678gxluQAAgD8AAIA/TbGPPfZoXrrWqCu4pHocsyOOG7t3/0k3AACAPwAAgD9mzCc9/7hmPvuvtrw+e2C++pu9Ox4Lhr0AAAAAAAAAAEbQKT6zRJo/DlOfPikQbb71q6k+GAWFPgAAAAAAAAAAGikYPfbEULoMu0E5a/o7NGyj4jrLmmS4AACAPwAAgD9mzTY9KUgsuoXX+DmTtsm1Yt+vu3HeEbkAAIA/AACAP1NoJr7YE9w+a0PQPaX0qr4/Kh88w0bKugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQVAlfJFLGMAWyUTegDjAF0lEdAqHcwChew93V9lChoBkdAcBZrxRVIZ2gHTU8BaAhHQKh4HrNW2gF1fZQoaAZHQGLmNxMnJDFoB03oA2gIR0CoeR9WQwK0dX2UKGgGR0Bl8BWzWwu/aAdN6ANoCEdAqHtqKJl8PXV9lChoBkdAZFPTAnDziGgHTegDaAhHQKh8j/Q0GeN1fZQoaAZHQEERhjvuw5hoB0vQaAhHQKiAHvw3HaN1fZQoaAZHQGMytoSL61toB03oA2gIR0CoiLQID5j6dX2UKGgGR0BkmX0oScslaAdN6ANoCEdAqIoE2Hck+3V9lChoBkdAYTHYigTRIGgHTegDaAhHQKiKOPGQ0XR1fZQoaAZHQGGwrFXJYDFoB03oA2gIR0CojeQw0wajdX2UKGgGR0BlrPQla8pTaAdN6ANoCEdAqI8D5XU6P3V9lChoBkdAYW4r6LwWnGgHTegDaAhHQKiQfmT1TR91fZQoaAZHQGN8rdFfAsVoB03oA2gIR0Coj/J6po9LdX2UKGgGR0BkxU8ox59maAdN6ANoCEdAqJPrwKBuoHV9lChoBkdAYspXp4bCJ2gHTegDaAhHQKiTcWfK6nR1fZQoaAZHQG8g4oy9EkVoB01lAmgIR0ConX+gctGvdX2UKGgGR0BjRq97F85TaAdN6ANoCEdAqJy6l54W13V9lChoBkdAYnHTZQHiWGgHTegDaAhHQKifJ/0dzXB1fZQoaAZHQGSSDlgc94hoB03oA2gIR0Coocx2bG3ndX2UKGgGR0BlGkQ/X5FgaAdN6ANoCEdAqKKXNNahYnV9lChoBkdAYnvYMfA9FGgHTegDaAhHQKikvx8UmD11fZQoaAZHQGgNKJMxoIxoB03oA2gIR0Copclr2xptdX2UKGgGR0BiEi8g6ltTaAdN6ANoCEdAqKkRw0fozXV9lChoBkdAZnD961LJ0WgHTegDaAhHQKi0IMm4RVZ1fZQoaAZHQGNaKvvBrN5oB03oA2gIR0CotFQ8GLUDdX2UKGgGR0BjNmAEt/WlaAdN6ANoCEdAqLgzNMXaanV9lChoBkdAYSZlar3j/GgHTegDaAhHQKi5RYISlFd1fZQoaAZHQG4t5Aprk81oB03KA2gIR0CouQIexOcldX2UKGgGR0Bg/CfBeokzaAdN6ANoCEdAqLqK7EpAlnV9lChoBkdAZsQu7HyVfWgHTegDaAhHQKi88sGxD9h1fZQoaAZHQGNAHM+u/1xoB03oA2gIR0CovHk690zTdX2UKGgGR0A9wj5bhWHUaAdL4mgIR0Cov7XZf2K3dX2UKGgGR0BigyzAvcrRaAdN6ANoCEdAqMbM4ku6E3V9lChoBkdAZaBJJXhfjWgHTegDaAhHQKjGAydnTRZ1fZQoaAZHQGL4HpbD/ERoB03oA2gIR0CoyE/TCtRvdX2UKGgGR0BjMxVdX1aoaAdN6ANoCEdAqMrAbEP1+XV9lChoBkdAZJM6cy31BmgHTegDaAhHQKjLgzeGfwt1fZQoaAZHQHDqaZDzAetoB02IAmgIR0CozaEoWpIddX2UKGgGR0BjCdDF6zE8aAdN6ANoCEdAqM2TYGt6onV9lChoBkdAYeGuHvc8DGgHTegDaAhHQKjOjtNzr/t1fZQoaAZHQGbWY9xIatNoB03oA2gIR0Co0OTgVGkOdX2UKGgGR0BtYlfAsTWYaAdNfwFoCEdAqNLLx7RfGHV9lChoBkdAYE9Xo1UEPmgHTegDaAhHQKjcWL1EmY11fZQoaAZHQGebbPhQ3xZoB03oA2gIR0Co3IS0a6z3dX2UKGgGR0BnnEZ9/jKgaAdN6ANoCEdAqN/olt0mt3V9lChoBkdAX+DugHu7YmgHTegDaAhHQKjiD987ZFp1fZQoaAZHQGY/O5z5oGpoB03oA2gIR0Co5Fyw4bS7dX2UKGgGR0BfR1r6+FlDaAdN6ANoCEdAqOPfG8274HV9lChoBkdAZ3aAUcn3L2gHTegDaAhHQKjmwREnb7F1fZQoaAZHQHJm73K0UoNoB03dAWgIR0Co6bSCe2/jdX2UKGgGR0BjQcSyt3fRaAdN6ANoCEdAqOxIqbz9THV9lChoBkdAYqForWiDd2gHTegDaAhHQKjre8/Uvwp1fZQoaAZHQHD58OskpqhoB01MAmgIR0Co7EkZzgdfdX2UKGgGR0Bl34nYxtYTaAdN6ANoCEdAqO+54nndPHV9lChoBkdAXSq7tiQT22gHTegDaAhHQKjwuIw/PgN1fZQoaAZHQHI1GT5ftyBoB02tA2gIR0Co8VMBZIQOdX2UKGgGR0BjiyqbSZ0CaAdN6ANoCEdAqPOBq0tyxXV9lChoBkdAXchradtl7WgHTegDaAhHQKj0i+8Gs3h1fZQoaAZHQGZYxtpEhJRoB03oA2gIR0Co90AxJul5dX2UKGgGR0BitFmWdEsraAdN6ANoCEdAqPiHzjFQ23V9lChoBkdAcUQ9fTkQw2gHTVYBaAhHQKkE8ejmCAd1fZQoaAZHQGYMSrxRVIZoB03oA2gIR0CpBd9Zq20BdX2UKGgGR0BiJrMvAXVLaAdN6ANoCEdAqQiTiXIEKXV9lChoBkdAcS1KU3XI2mgHTasDaAhHQKkJeY3Ns311fZQoaAZHQGVoRTjvNNdoB03oA2gIR0CpC0qRuCPIdX2UKGgGR0Bucz1f3N9qaAdNqwFoCEdAqQtO2JBPbnV9lChoBkdAcVFpuuRs/WgHTTIBaAhHQKkLtLJSzgN1fZQoaAZHQGf3Vj7Q9idoB03oA2gIR0CpDfX/5tWNdX2UKGgGR0Bmva46Oo5xaAdN6ANoCEdAqRDEZHd43XV9lChoBkdAcIR6kZaV2WgHTT8CaAhHQKkRbaePJaJ1fZQoaAZHQFz+NhVlwtJoB03oA2gIR0CpEyPG6wt8dX2UKGgGR0BhnXXumaYvaAdN6ANoCEdAqRJQAOrhi3V9lChoBkdAZOLzaK1og2gHTegDaAhHQKkTDMi8nNR1fZQoaAZHQGbC0M5OrQxoB03oA2gIR0CpFny4vvjPdX2UKGgGR0BtSDqUu+RHaAdNnwFoCEdAqRXzKzRhMXV9lChoBkdAZcFzkIX0oWgHTegDaAhHQKkXL6CUX551fZQoaAZHQGdH75/LDAJoB03oA2gIR0CpGNOFQEZBdX2UKGgGR0BuPBsEaESNaAdNaANoCEdAqStmi+L3sXV9lChoBkdAZefrUsnRcGgHTegDaAhHQKkr0WnCO3l1fZQoaAZHQGG2NnPE87poB03oA2gIR0CpLLug6EJ0dX2UKGgGR0BvF+YhMajvaAdNSgFoCEdAqS0ttfoicHV9lChoBkdAZPYnTiKiwmgHTegDaAhHQKkvtCfpUxV1fZQoaAZHQGTjO2qkuYhoB03oA2gIR0CpMLg5BC2MdX2UKGgGR0BhniobXHzZaAdN6ANoCEdAqTEbWAf+0nV9lChoBkdAceBNtZV4o2gHTasCaAhHQKkzQ8nNPgx1fZQoaAZHQGU1LbxmTTxoB03oA2gIR0CpM3UjC53DdX2UKGgGR0Bv5u9pRGc4aAdNfQNoCEdAqTRAp2ECeXV9lChoBkdAb7ab8WKuS2gHTUoDaAhHQKk0lKzRhMJ1fZQoaAZHQGb/udPLxI9oB03oA2gIR0CpNkd3jdYXdX2UKGgGR0BxjCaTfR/maAdNFgNoCEdAqTaOTHKfWnV9lChoBkdAblqgbIcR2GgHTXIBaAhHQKk2qPMjeKt1fZQoaAZHQGGPsWXTmXBoB03oA2gIR0CpOMHB+F10dX2UKGgGR0BmxP7SApazaAdN6ANoCEdAqTf2Y2Kl6HV9lChoBkdAcHa18b70nWgHTcYBaAhHQKk8BbcoH9p1fZQoaAZHQGLnY9xIatNoB03oA2gIR0CpPUShakhzdX2UKGgGR0BxicWtU4rCaAdNugJoCEdAqT5ghr30w3V9lChoBkdAcwa20Re1KGgHTc8BaAhHQKlBJNVR1ox1fZQoaAZHQHKDM6NlyzZoB01iAmgIR0CpQY6r/82rdX2UKGgGR0BymzlbNbC8aAdNgwJoCEdAqUXQInjQzHV9lChoBkdAcOWZxJd0JWgHTXoBaAhHQKlG9Y9xIat1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}