--- license: mit base_model: LazarusNLP/NusaBERT-base tags: - generated_from_trainer datasets: - indonlu metrics: - precision - recall - f1 - accuracy model-index: - name: NusaBERT-base-NERP results: - task: name: Token Classification type: token-classification dataset: name: indonlu type: indonlu config: nerp split: validation args: nerp metrics: - name: Precision type: precision value: 0.8060507833603457 - name: Recall type: recall value: 0.8405633802816901 - name: F1 type: f1 value: 0.8229453943739657 - name: Accuracy type: accuracy value: 0.9634085213032582 --- # NusaBERT-base-NERP This model is a fine-tuned version of [LazarusNLP/NusaBERT-base](https://huggingface.co/LazarusNLP/NusaBERT-base) on the indonlu dataset. It achieves the following results on the evaluation set: - Loss: 0.1254 - Precision: 0.8061 - Recall: 0.8406 - F1: 0.8229 - Accuracy: 0.9634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 420 | 0.1444 | 0.7415 | 0.8272 | 0.7820 | 0.9543 | | 0.2385 | 2.0 | 840 | 0.1276 | 0.7879 | 0.8187 | 0.8030 | 0.9586 | | 0.1143 | 3.0 | 1260 | 0.1260 | 0.7815 | 0.8510 | 0.8148 | 0.9597 | | 0.0903 | 4.0 | 1680 | 0.1305 | 0.7836 | 0.8516 | 0.8162 | 0.9596 | | 0.07 | 5.0 | 2100 | 0.1342 | 0.8158 | 0.8255 | 0.8206 | 0.9605 | | 0.0582 | 6.0 | 2520 | 0.1343 | 0.8172 | 0.8408 | 0.8288 | 0.9606 | | 0.0582 | 7.0 | 2940 | 0.1440 | 0.7936 | 0.8476 | 0.8197 | 0.9594 | | 0.0521 | 8.0 | 3360 | 0.1447 | 0.8069 | 0.8453 | 0.8257 | 0.9605 | | 0.0446 | 9.0 | 3780 | 0.1512 | 0.7996 | 0.8453 | 0.8218 | 0.9599 | | 0.0417 | 10.0 | 4200 | 0.1524 | 0.8078 | 0.8453 | 0.8261 | 0.9606 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu118 - Datasets 2.17.1 - Tokenizers 0.15.1