Lauther commited on
Commit
d39a8fd
·
verified ·
1 Parent(s): 1442c45

Add new SentenceTransformer model

Browse files
README.md ADDED
@@ -0,0 +1,801 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:5220
8
+ - loss:CosineSimilarityLoss
9
+ base_model: jxm/cde-small-v2
10
+ widget:
11
+ - source_sentence: Identify the column that stores the uncertainty value.
12
+ sentences:
13
+ - "What is measuring equipment?\nMeasuring equipment refers to the devices that\
14
+ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\
15
+ \ number for identification.\n- A technical name, such as transmitter, plate,\
16
+ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\
17
+ \ equipment is assigned to a measurement system, it is given a unique identifier\
18
+ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\
19
+ \ considered in use in a measurement system.\n- If it does not have a tag, it\
20
+ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\
21
+ The type of equipment assigned to a measurement system depends on the technology\
22
+ \ used, for example:\n1. Differential technology (for gas measurement):\n -\
23
+ \ Static pressure transmitters\n - Differential pressure transmitters\n \
24
+ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\
25
+ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\
26
+ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \
27
+ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\
28
+ - A measurement system can have multiple pieces of equipment.\n- However, a piece\
29
+ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\
30
+ - The database includes a special table to manage the list of equipment assigned\
31
+ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\
32
+ \ are searching for operational equipment assigned to a measurement system.\n\
33
+ - If a user is looking for spare or unused equipment, they are searching for equipment\
34
+ \ not listed in the tagged equipment table.\n- Commonly used when user refers\
35
+ \ directly to an \"\"Equipment Tag\""
36
+ - 'What is equipment calibration?
37
+
38
+ Calibration is a metrological verification process used to ensure the accuracy
39
+ of measurement equipment. It is performed periodically, based on intervals set
40
+ by the company or a regulatory body.
41
+
42
+
43
+ Purpose of calibration:
44
+
45
+ The calibration process corrects any deviations in how the equipment measures
46
+ physical magnitudes (variables). This ensures the equipment provides accurate
47
+ and reliable data.
48
+
49
+
50
+ Calibration cycles:
51
+
52
+ There are two main calibration cycles:
53
+
54
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
55
+ are made. This cycle is almost always implemented.
56
+
57
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
58
+ are made. This cycle is used depending on regulatory requirements.
59
+
60
+
61
+ Calibration uncertainty:
62
+
63
+ - Uncertainty is included in the results of a calibration.
64
+
65
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
66
+ which also affects the uncertainty of the measured variable or magnitude.'
67
+ - 'What kind of data store an equipment?
68
+
69
+ Equipments can capture meteorological data, such as pressure, temperature, and
70
+ volume (magnitudes). This data is essential for users to perform various calculations.
71
+
72
+
73
+ Data storage:
74
+
75
+ - The measured values are stored in a special table in the database for magnitudes.
76
+ This table contains the values of the variables captured by the equipments.
77
+
78
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
79
+ temperature, or volume readings). **They are not calculated values**, such as
80
+ uncertainty.
81
+
82
+ - The values stored in the variable values table are **different** from variable
83
+ uncertainty values, which are calculated separately and represent the margin of
84
+ error.
85
+
86
+
87
+ Accessing the data:
88
+
89
+ - Users typically access the data by referring to the readings from the measurement
90
+ system, not directly from the individual equipments.
91
+
92
+ - The readings are stored in a "variable values" table within the database.
93
+
94
+
95
+ Linking variable names:
96
+
97
+ If the user needs to know the name of a variable, they must link the data to another
98
+ table that stores information about the types of variables.'
99
+ - source_sentence: SELECT * FROM EquipmentType LIMIT 1
100
+ sentences:
101
+ - 'What kind of data store an equipment?
102
+
103
+ Equipments can capture meteorological data, such as pressure, temperature, and
104
+ volume (magnitudes). This data is essential for users to perform various calculations.
105
+
106
+
107
+ Data storage:
108
+
109
+ - The measured values are stored in a special table in the database for magnitudes.
110
+ This table contains the values of the variables captured by the equipments.
111
+
112
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
113
+ temperature, or volume readings). **They are not calculated values**, such as
114
+ uncertainty.
115
+
116
+ - The values stored in the variable values table are **different** from variable
117
+ uncertainty values, which are calculated separately and represent the margin of
118
+ error.
119
+
120
+
121
+ Accessing the data:
122
+
123
+ - Users typically access the data by referring to the readings from the measurement
124
+ system, not directly from the individual equipments.
125
+
126
+ - The readings are stored in a "variable values" table within the database.
127
+
128
+
129
+ Linking variable names:
130
+
131
+ If the user needs to know the name of a variable, they must link the data to another
132
+ table that stores information about the types of variables.'
133
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
134
+ \ daily or hourly reports to provide users with operational data. These reports\
135
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
136
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
137
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
138
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
139
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
140
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
141
+ \ are linked to a Modbus table. This table contains the names corresponding to\
142
+ \ each value in the reports, making it easier to interpret the data."
143
+ - 'What is a flow computer?
144
+
145
+ A flow computer is a device used in measurement engineering. It collects analog
146
+ and digital data from flow meters and other sensors.
147
+
148
+
149
+ Key features of a flow computer:
150
+
151
+ - It has a unique name, firmware version, and manufacturer information.
152
+
153
+ - It is designed to record and process data such as temperature, pressure, and
154
+ fluid volume (for gases or oils).
155
+
156
+
157
+ Main function:
158
+
159
+ The flow computer sends the collected data to a measurement system. This allows
160
+ measurement engineers to analyze the data and perform their tasks effectively.'
161
+ - source_sentence: What tables store measurement system data?
162
+ sentences:
163
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
164
+ \ and reliability of results obtained from equipment or measurement systems. It\
165
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
166
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
167
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
168
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
169
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
170
+ \ serves as a starting point for further calculations related to the equipment.\n\
171
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
172
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
173
+ \ the individual variables (magnitudes) and represents the combined margin of\
174
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
175
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
176
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
177
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
178
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
179
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
180
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
181
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
182
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
183
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
184
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
185
+ - To find the uncertainty of the measurement system, join the measurement systems\
186
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
187
+ \ of a specific variable (magnitude), join the measurement systems table with\
188
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
189
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
190
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
191
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
192
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
193
+ \ systems table + uncertainty of magnitudes table)."
194
+ - "What is a measurement system?\nA measurement system, also referred to as a delivery\
195
+ \ point, measurement point, or reception point, is used to measure and monitor\
196
+ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\
197
+ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\
198
+ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\
199
+ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\
200
+ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\
201
+ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\
202
+ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\
203
+ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\
204
+ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\
205
+ \ systems:\nMeasurement systems are classified based on the stage of the process\
206
+ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\
207
+ - Appropriation\n- Custody\n- Production Poços"
208
+ - 'What do measurement equipment measure?
209
+
210
+ Each equipment measures a physical magnitude, also known as a variable. Based
211
+ on the type of variable they measure, devices are classified into different categories.
212
+
213
+
214
+ Equipment classification:
215
+
216
+ - Primary meter: Assigned by default to equipments like orifice plates.
217
+
218
+ - Secondary meter: Assigned by default to equipments like transmitters.
219
+
220
+ - Tertiary meter: Used for other types of equipments.
221
+
222
+
223
+ Equipment types in the database:
224
+
225
+ The database includes a table listing all equipment types. Examples of equipment
226
+ types are:
227
+
228
+ - Differential pressure transmitters
229
+
230
+ - RTDs (Resistance Temperature Detectors)
231
+
232
+ - Orifice plates
233
+
234
+ - Multivariable transmitters
235
+
236
+ - Ultrasonic meters
237
+
238
+
239
+ Meteorological checks for equipments:
240
+
241
+ Each equipment type is assigned a meteorological check, which can be either:
242
+
243
+ - Calibration: To ensure measurement accuracy.
244
+
245
+ - Inspection: To verify proper functioning.
246
+
247
+
248
+ Data storage in tables:
249
+
250
+ The database also includes a separate table for equipment classifications, which
251
+ are:
252
+
253
+ - Primary meter
254
+
255
+ - Secondary meter
256
+
257
+ - Tertiary meter
258
+
259
+ So, an equipment has equipment types and this types has classifications.'
260
+ - source_sentence: What is the table structure for equipment types?
261
+ sentences:
262
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
263
+ \ daily or hourly reports to provide users with operational data. These reports\
264
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
265
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
266
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
267
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
268
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
269
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
270
+ \ are linked to a Modbus table. This table contains the names corresponding to\
271
+ \ each value in the reports, making it easier to interpret the data."
272
+ - "What is measuring equipment?\nMeasuring equipment refers to the devices that\
273
+ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\
274
+ \ number for identification.\n- A technical name, such as transmitter, plate,\
275
+ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\
276
+ \ equipment is assigned to a measurement system, it is given a unique identifier\
277
+ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\
278
+ \ considered in use in a measurement system.\n- If it does not have a tag, it\
279
+ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\
280
+ The type of equipment assigned to a measurement system depends on the technology\
281
+ \ used, for example:\n1. Differential technology (for gas measurement):\n -\
282
+ \ Static pressure transmitters\n - Differential pressure transmitters\n \
283
+ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\
284
+ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\
285
+ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \
286
+ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\
287
+ - A measurement system can have multiple pieces of equipment.\n- However, a piece\
288
+ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\
289
+ - The database includes a special table to manage the list of equipment assigned\
290
+ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\
291
+ \ are searching for operational equipment assigned to a measurement system.\n\
292
+ - If a user is looking for spare or unused equipment, they are searching for equipment\
293
+ \ not listed in the tagged equipment table.\n- Commonly used when user refers\
294
+ \ directly to an \"\"Equipment Tag\""
295
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
296
+ \ and reliability of results obtained from equipment or measurement systems. It\
297
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
298
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
299
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
300
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
301
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
302
+ \ serves as a starting point for further calculations related to the equipment.\n\
303
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
304
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
305
+ \ the individual variables (magnitudes) and represents the combined margin of\
306
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
307
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
308
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
309
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
310
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
311
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
312
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
313
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
314
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
315
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
316
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
317
+ - To find the uncertainty of the measurement system, join the measurement systems\
318
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
319
+ \ of a specific variable (magnitude), join the measurement systems table with\
320
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
321
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
322
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
323
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
324
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
325
+ \ systems table + uncertainty of magnitudes table)."
326
+ - source_sentence: What columns store the uncertainty values?
327
+ sentences:
328
+ - "What is a measurement system?\nA measurement system, also referred to as a delivery\
329
+ \ point, measurement point, or reception point, is used to measure and monitor\
330
+ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\
331
+ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\
332
+ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\
333
+ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\
334
+ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\
335
+ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\
336
+ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\
337
+ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\
338
+ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\
339
+ \ systems:\nMeasurement systems are classified based on the stage of the process\
340
+ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\
341
+ - Appropriation\n- Custody\n- Production Poços"
342
+ - 'How are flow computers and measurement systems related?
343
+
344
+ Flow computers can have multiple systems assigned to them. However, a measurement
345
+ system can only be assigned to one flow computer.
346
+
347
+
348
+ Database terminology:
349
+
350
+ In the database, this relationship is referred to as:
351
+
352
+ - Meter streams
353
+
354
+ - Meter runs
355
+
356
+ - Sections
357
+
358
+
359
+ Storage of the relationship:
360
+
361
+ The relationship between a flow computer and its assigned measurement system is
362
+ stored in a special table.
363
+
364
+
365
+ User context:
366
+
367
+ When a user refers to a "meter stream," they are indicating that they are searching
368
+ for a measurement system assigned to a specific flow computer.'
369
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
370
+ \ and reliability of results obtained from equipment or measurement systems. It\
371
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
372
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
373
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
374
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
375
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
376
+ \ serves as a starting point for further calculations related to the equipment.\n\
377
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
378
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
379
+ \ the individual variables (magnitudes) and represents the combined margin of\
380
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
381
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
382
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
383
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
384
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
385
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
386
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
387
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
388
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
389
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
390
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
391
+ - To find the uncertainty of the measurement system, join the measurement systems\
392
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
393
+ \ of a specific variable (magnitude), join the measurement systems table with\
394
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
395
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
396
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
397
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
398
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
399
+ \ systems table + uncertainty of magnitudes table)."
400
+ datasets:
401
+ - Lauther/embeddings-train-semantic
402
+ pipeline_tag: sentence-similarity
403
+ library_name: sentence-transformers
404
+ ---
405
+
406
+ # SentenceTransformer based on jxm/cde-small-v2
407
+
408
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jxm/cde-small-v2](https://huggingface.co/jxm/cde-small-v2) on the [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
409
+
410
+ ## Model Details
411
+
412
+ ### Model Description
413
+ - **Model Type:** Sentence Transformer
414
+ - **Base model:** [jxm/cde-small-v2](https://huggingface.co/jxm/cde-small-v2) <!-- at revision a7e5882ad52c27ea2831fc8258f24379c25cb459 -->
415
+ - **Maximum Sequence Length:** None tokens
416
+ - **Output Dimensionality:** None dimensions
417
+ - **Similarity Function:** Cosine Similarity
418
+ - **Training Dataset:**
419
+ - [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic)
420
+ <!-- - **Language:** Unknown -->
421
+ <!-- - **License:** Unknown -->
422
+
423
+ ### Model Sources
424
+
425
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
426
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
427
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
428
+
429
+ ### Full Model Architecture
430
+
431
+ ```
432
+ SentenceTransformer(
433
+ (0): Transformer({}) with Transformer model: ContextualDocumentEmbeddingTransformer
434
+ )
435
+ ```
436
+
437
+ ## Usage
438
+
439
+ ### Direct Usage (Sentence Transformers)
440
+
441
+ First install the Sentence Transformers library:
442
+
443
+ ```bash
444
+ pip install -U sentence-transformers
445
+ ```
446
+
447
+ Then you can load this model and run inference.
448
+ ```python
449
+ from sentence_transformers import SentenceTransformer
450
+
451
+ # Download from the 🤗 Hub
452
+ model = SentenceTransformer("Lauther/emb-cde-small-v2-2e")
453
+ # Run inference
454
+ sentences = [
455
+ 'What columns store the uncertainty values?',
456
+ 'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
457
+ 'What is uncertainty?\nUncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.\n\nTypes of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of magnitudes (variables):\n - Refers to the uncertainty of specific variables, such as temperature or pressure.\n - It is calculated after calibrating a device or obtained from the equipment manufacturer\'s manual.\n - This uncertainty serves as a starting point for further calculations related to the equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated for the overall flow measurement.\n - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of the measurement system. Think of them as the "building blocks."\n- Do not confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty of the measurement system**: Specific to the overall flow measurement.\n\nDatabase storage for uncertainties:\nIn the database, uncertainty calculations are stored in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores the uncertainty values for specific variables (e.g., temperature, pressure).\n\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n- To find the uncertainty of the measurement system, join the measurement systems table with the uncertainty of the measurement system table.\n- To find the uncertainty of a specific variable (magnitude), join the measurement systems table with the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not confuse the two types of uncertainty:\n- If the user requests the uncertainty of the measurement system, use the first join (measurement systems table + uncertainty of the measurement system table).\n- If the user requests the uncertainty of a specific variable (magnitude) in a report, use the second join (measurement systems table + uncertainty of magnitudes table).',
458
+ ]
459
+ embeddings = model.encode(sentences)
460
+ print(embeddings.shape)
461
+ # [3, 1024]
462
+
463
+ # Get the similarity scores for the embeddings
464
+ similarities = model.similarity(embeddings, embeddings)
465
+ print(similarities.shape)
466
+ # [3, 3]
467
+ ```
468
+
469
+ <!--
470
+ ### Direct Usage (Transformers)
471
+
472
+ <details><summary>Click to see the direct usage in Transformers</summary>
473
+
474
+ </details>
475
+ -->
476
+
477
+ <!--
478
+ ### Downstream Usage (Sentence Transformers)
479
+
480
+ You can finetune this model on your own dataset.
481
+
482
+ <details><summary>Click to expand</summary>
483
+
484
+ </details>
485
+ -->
486
+
487
+ <!--
488
+ ### Out-of-Scope Use
489
+
490
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
491
+ -->
492
+
493
+ <!--
494
+ ## Bias, Risks and Limitations
495
+
496
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
497
+ -->
498
+
499
+ <!--
500
+ ### Recommendations
501
+
502
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
503
+ -->
504
+
505
+ ## Training Details
506
+
507
+ ### Training Dataset
508
+
509
+ #### embeddings-train-semantic
510
+
511
+ * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330)
512
+ * Size: 5,220 training samples
513
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
514
+ * Approximate statistics based on the first 1000 samples:
515
+ | | sentence1 | sentence2 | score |
516
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------|
517
+ | type | string | string | float |
518
+ | details | <ul><li>min: 6 tokens</li><li>mean: 14.88 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 114 tokens</li><li>mean: 244.02 tokens</li><li>max: 489 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 1.0</li></ul> |
519
+ * Samples:
520
+ | sentence1 | sentence2 | score |
521
+ |:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
522
+ | <code>What is the data type of differential pressure in the measurement system?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> |
523
+ | <code>What is the structure of the &&&equipment_data&&& table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.35000000000000003</code> |
524
+ | <code>Find the columns in the flow computer table that identify the flow computer.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
525
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
526
+ ```json
527
+ {
528
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
529
+ }
530
+ ```
531
+
532
+ ### Evaluation Dataset
533
+
534
+ #### embeddings-train-semantic
535
+
536
+ * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330)
537
+ * Size: 652 evaluation samples
538
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
539
+ * Approximate statistics based on the first 652 samples:
540
+ | | sentence1 | sentence2 | score |
541
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------|
542
+ | type | string | string | float |
543
+ | details | <ul><li>min: 6 tokens</li><li>mean: 14.48 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 114 tokens</li><li>mean: 241.25 tokens</li><li>max: 489 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.24</li><li>max: 0.9</li></ul> |
544
+ * Samples:
545
+ | sentence1 | sentence2 | score |
546
+ |:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
547
+ | <code>How can I filter uncertainty reports by equipment tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.09999999999999999</code> |
548
+ | <code>What is the purpose of the flow_data table?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> |
549
+ | <code>What is the column name for the report date in the Reports table?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.1</code> |
550
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
551
+ ```json
552
+ {
553
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
554
+ }
555
+ ```
556
+
557
+ ### Training Hyperparameters
558
+ #### Non-Default Hyperparameters
559
+
560
+ - `eval_strategy`: steps
561
+ - `per_device_train_batch_size`: 4
562
+ - `per_device_eval_batch_size`: 4
563
+ - `gradient_accumulation_steps`: 4
564
+ - `learning_rate`: 2e-05
565
+ - `num_train_epochs`: 2
566
+ - `warmup_ratio`: 0.1
567
+
568
+ #### All Hyperparameters
569
+ <details><summary>Click to expand</summary>
570
+
571
+ - `overwrite_output_dir`: False
572
+ - `do_predict`: False
573
+ - `eval_strategy`: steps
574
+ - `prediction_loss_only`: True
575
+ - `per_device_train_batch_size`: 4
576
+ - `per_device_eval_batch_size`: 4
577
+ - `per_gpu_train_batch_size`: None
578
+ - `per_gpu_eval_batch_size`: None
579
+ - `gradient_accumulation_steps`: 4
580
+ - `eval_accumulation_steps`: None
581
+ - `torch_empty_cache_steps`: None
582
+ - `learning_rate`: 2e-05
583
+ - `weight_decay`: 0.0
584
+ - `adam_beta1`: 0.9
585
+ - `adam_beta2`: 0.999
586
+ - `adam_epsilon`: 1e-08
587
+ - `max_grad_norm`: 1.0
588
+ - `num_train_epochs`: 2
589
+ - `max_steps`: -1
590
+ - `lr_scheduler_type`: linear
591
+ - `lr_scheduler_kwargs`: {}
592
+ - `warmup_ratio`: 0.1
593
+ - `warmup_steps`: 0
594
+ - `log_level`: passive
595
+ - `log_level_replica`: warning
596
+ - `log_on_each_node`: True
597
+ - `logging_nan_inf_filter`: True
598
+ - `save_safetensors`: True
599
+ - `save_on_each_node`: False
600
+ - `save_only_model`: False
601
+ - `restore_callback_states_from_checkpoint`: False
602
+ - `no_cuda`: False
603
+ - `use_cpu`: False
604
+ - `use_mps_device`: False
605
+ - `seed`: 42
606
+ - `data_seed`: None
607
+ - `jit_mode_eval`: False
608
+ - `use_ipex`: False
609
+ - `bf16`: False
610
+ - `fp16`: False
611
+ - `fp16_opt_level`: O1
612
+ - `half_precision_backend`: auto
613
+ - `bf16_full_eval`: False
614
+ - `fp16_full_eval`: False
615
+ - `tf32`: None
616
+ - `local_rank`: 0
617
+ - `ddp_backend`: None
618
+ - `tpu_num_cores`: None
619
+ - `tpu_metrics_debug`: False
620
+ - `debug`: []
621
+ - `dataloader_drop_last`: False
622
+ - `dataloader_num_workers`: 0
623
+ - `dataloader_prefetch_factor`: None
624
+ - `past_index`: -1
625
+ - `disable_tqdm`: False
626
+ - `remove_unused_columns`: True
627
+ - `label_names`: None
628
+ - `load_best_model_at_end`: False
629
+ - `ignore_data_skip`: False
630
+ - `fsdp`: []
631
+ - `fsdp_min_num_params`: 0
632
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
633
+ - `fsdp_transformer_layer_cls_to_wrap`: None
634
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
635
+ - `deepspeed`: None
636
+ - `label_smoothing_factor`: 0.0
637
+ - `optim`: adamw_torch
638
+ - `optim_args`: None
639
+ - `adafactor`: False
640
+ - `group_by_length`: False
641
+ - `length_column_name`: length
642
+ - `ddp_find_unused_parameters`: None
643
+ - `ddp_bucket_cap_mb`: None
644
+ - `ddp_broadcast_buffers`: False
645
+ - `dataloader_pin_memory`: True
646
+ - `dataloader_persistent_workers`: False
647
+ - `skip_memory_metrics`: True
648
+ - `use_legacy_prediction_loop`: False
649
+ - `push_to_hub`: False
650
+ - `resume_from_checkpoint`: None
651
+ - `hub_model_id`: None
652
+ - `hub_strategy`: every_save
653
+ - `hub_private_repo`: None
654
+ - `hub_always_push`: False
655
+ - `gradient_checkpointing`: False
656
+ - `gradient_checkpointing_kwargs`: None
657
+ - `include_inputs_for_metrics`: False
658
+ - `include_for_metrics`: []
659
+ - `eval_do_concat_batches`: True
660
+ - `fp16_backend`: auto
661
+ - `push_to_hub_model_id`: None
662
+ - `push_to_hub_organization`: None
663
+ - `mp_parameters`:
664
+ - `auto_find_batch_size`: False
665
+ - `full_determinism`: False
666
+ - `torchdynamo`: None
667
+ - `ray_scope`: last
668
+ - `ddp_timeout`: 1800
669
+ - `torch_compile`: False
670
+ - `torch_compile_backend`: None
671
+ - `torch_compile_mode`: None
672
+ - `dispatch_batches`: None
673
+ - `split_batches`: None
674
+ - `include_tokens_per_second`: False
675
+ - `include_num_input_tokens_seen`: False
676
+ - `neftune_noise_alpha`: None
677
+ - `optim_target_modules`: None
678
+ - `batch_eval_metrics`: False
679
+ - `eval_on_start`: False
680
+ - `use_liger_kernel`: False
681
+ - `eval_use_gather_object`: False
682
+ - `average_tokens_across_devices`: False
683
+ - `prompts`: None
684
+ - `batch_sampler`: batch_sampler
685
+ - `multi_dataset_batch_sampler`: proportional
686
+
687
+ </details>
688
+
689
+ ### Training Logs
690
+ | Epoch | Step | Training Loss | Validation Loss |
691
+ |:------:|:----:|:-------------:|:---------------:|
692
+ | 0.0307 | 10 | 0.3223 | - |
693
+ | 0.0613 | 20 | 0.1862 | - |
694
+ | 0.0920 | 30 | 0.232 | - |
695
+ | 0.1226 | 40 | 0.1574 | - |
696
+ | 0.1533 | 50 | 0.1454 | 0.0369 |
697
+ | 0.1839 | 60 | 0.1331 | - |
698
+ | 0.2146 | 70 | 0.1327 | - |
699
+ | 0.2452 | 80 | 0.1571 | - |
700
+ | 0.2759 | 90 | 0.1287 | - |
701
+ | 0.3065 | 100 | 0.1275 | 0.0269 |
702
+ | 0.3372 | 110 | 0.0958 | - |
703
+ | 0.3678 | 120 | 0.1232 | - |
704
+ | 0.3985 | 130 | 0.1107 | - |
705
+ | 0.4291 | 140 | 0.0843 | - |
706
+ | 0.4598 | 150 | 0.1073 | 0.0238 |
707
+ | 0.4904 | 160 | 0.0818 | - |
708
+ | 0.5211 | 170 | 0.1107 | - |
709
+ | 0.5517 | 180 | 0.0855 | - |
710
+ | 0.5824 | 190 | 0.0727 | - |
711
+ | 0.6130 | 200 | 0.0684 | 0.0218 |
712
+ | 0.6437 | 210 | 0.081 | - |
713
+ | 0.6743 | 220 | 0.0733 | - |
714
+ | 0.7050 | 230 | 0.0752 | - |
715
+ | 0.7356 | 240 | 0.092 | - |
716
+ | 0.7663 | 250 | 0.0764 | 0.0173 |
717
+ | 0.7969 | 260 | 0.0588 | - |
718
+ | 0.8276 | 270 | 0.0599 | - |
719
+ | 0.8582 | 280 | 0.0682 | - |
720
+ | 0.8889 | 290 | 0.0721 | - |
721
+ | 0.9195 | 300 | 0.0522 | 0.0163 |
722
+ | 0.9502 | 310 | 0.0642 | - |
723
+ | 0.9808 | 320 | 0.0582 | - |
724
+ | 1.0092 | 330 | 0.0558 | - |
725
+ | 1.0398 | 340 | 0.0548 | - |
726
+ | 1.0705 | 350 | 0.0486 | 0.0156 |
727
+ | 1.1011 | 360 | 0.0596 | - |
728
+ | 1.1318 | 370 | 0.056 | - |
729
+ | 1.1625 | 380 | 0.0497 | - |
730
+ | 1.1931 | 390 | 0.0505 | - |
731
+ | 1.2238 | 400 | 0.0423 | 0.0156 |
732
+ | 1.2544 | 410 | 0.0312 | - |
733
+ | 1.2851 | 420 | 0.0514 | - |
734
+ | 1.3157 | 430 | 0.0501 | - |
735
+ | 1.3464 | 440 | 0.0451 | - |
736
+ | 1.3770 | 450 | 0.0533 | 0.0150 |
737
+ | 1.4077 | 460 | 0.0443 | - |
738
+ | 1.4383 | 470 | 0.0564 | - |
739
+ | 1.4690 | 480 | 0.0429 | - |
740
+ | 1.4996 | 490 | 0.0412 | - |
741
+ | 1.5303 | 500 | 0.0564 | 0.0140 |
742
+ | 1.5609 | 510 | 0.042 | - |
743
+ | 1.5916 | 520 | 0.0279 | - |
744
+ | 1.6222 | 530 | 0.0414 | - |
745
+ | 1.6529 | 540 | 0.0345 | - |
746
+ | 1.6835 | 550 | 0.032 | 0.0142 |
747
+ | 1.7142 | 560 | 0.031 | - |
748
+ | 1.7448 | 570 | 0.0306 | - |
749
+ | 1.7755 | 580 | 0.0386 | - |
750
+ | 1.8061 | 590 | 0.0495 | - |
751
+ | 1.8368 | 600 | 0.0372 | 0.0143 |
752
+ | 1.8674 | 610 | 0.0424 | - |
753
+ | 1.8981 | 620 | 0.0324 | - |
754
+ | 1.9287 | 630 | 0.0341 | - |
755
+ | 1.9594 | 640 | 0.0344 | - |
756
+ | 1.9900 | 650 | 0.0493 | 0.0140 |
757
+
758
+
759
+ ### Framework Versions
760
+ - Python: 3.11.0
761
+ - Sentence Transformers: 3.4.0
762
+ - Transformers: 4.48.1
763
+ - PyTorch: 2.5.1+cu124
764
+ - Accelerate: 1.3.0
765
+ - Datasets: 3.2.0
766
+ - Tokenizers: 0.21.0
767
+
768
+ ## Citation
769
+
770
+ ### BibTeX
771
+
772
+ #### Sentence Transformers
773
+ ```bibtex
774
+ @inproceedings{reimers-2019-sentence-bert,
775
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
776
+ author = "Reimers, Nils and Gurevych, Iryna",
777
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
778
+ month = "11",
779
+ year = "2019",
780
+ publisher = "Association for Computational Linguistics",
781
+ url = "https://arxiv.org/abs/1908.10084",
782
+ }
783
+ ```
784
+
785
+ <!--
786
+ ## Glossary
787
+
788
+ *Clearly define terms in order to be accessible across audiences.*
789
+ -->
790
+
791
+ <!--
792
+ ## Model Card Authors
793
+
794
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
795
+ -->
796
+
797
+ <!--
798
+ ## Model Card Contact
799
+
800
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
801
+ -->
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jxm/cde-small-v2",
3
+ "architecture": "transductive",
4
+ "architectures": [
5
+ "ContextualDocumentEmbeddingTransformer"
6
+ ],
7
+ "attn_implementation": null,
8
+ "auto_map": {
9
+ "AutoConfig": "jxm/cde-small-v2--model.ContextualModelConfig",
10
+ "AutoModel": "jxm/cde-small-v2--model.ContextualDocumentEmbeddingTransformer"
11
+ },
12
+ "autoregressive_backbone": false,
13
+ "cache_dir": null,
14
+ "config_name": null,
15
+ "dataset_backbone": null,
16
+ "disable_dropout": true,
17
+ "disable_transductive_rotary_embedding": true,
18
+ "embedder": "answerdotai/ModernBERT-base",
19
+ "embedder_rerank": "sentence-transformers/gtr-t5-base",
20
+ "embedding_output_dim": null,
21
+ "limit_layers": null,
22
+ "limit_layers_first_stage": null,
23
+ "logit_scale": 50.0,
24
+ "max_seq_length": 512,
25
+ "model_revision": "main",
26
+ "pool_ignore_contextual_tokens": true,
27
+ "pool_ignore_instruction_tokens": true,
28
+ "pooling_strategy": "mean",
29
+ "tokenizer_name": null,
30
+ "torch_dtype": "float32",
31
+ "transductive_corpus_size": 512,
32
+ "transductive_sequence_dropout_prob": 0.0,
33
+ "transductive_tie_token_embeddings": false,
34
+ "transductive_tokens_per_document": 1,
35
+ "transformers_version": "4.48.1"
36
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "search_query: ",
9
+ "document": "search_document: "
10
+ },
11
+ "default_prompt_name": null,
12
+ "similarity_fn_name": "cosine"
13
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2195c3e5e1c2bd9f8ec72aa70099a9755a4d56aac4da576d94d8d16e9e093c94
3
+ size 1222859872
modules.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers_impl.Transformer",
7
+ "kwargs": [
8
+ "dataset_embeddings"
9
+ ]
10
+ }
11
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
sentence_transformers_impl.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import json
4
+ import logging
5
+ import os
6
+ from typing import Any, Optional
7
+
8
+ import torch
9
+ from torch import nn
10
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
11
+
12
+ logger = logging.getLogger(__name__)
13
+
14
+
15
+ class Transformer(nn.Module):
16
+ """Hugging Face AutoModel to generate token embeddings.
17
+ Loads the correct class, e.g. BERT / RoBERTa etc.
18
+ Args:
19
+ model_name_or_path: Hugging Face models name
20
+ (https://huggingface.co/models)
21
+ max_seq_length: Truncate any inputs longer than max_seq_length
22
+ model_args: Keyword arguments passed to the Hugging Face
23
+ Transformers model
24
+ tokenizer_args: Keyword arguments passed to the Hugging Face
25
+ Transformers tokenizer
26
+ config_args: Keyword arguments passed to the Hugging Face
27
+ Transformers config
28
+ cache_dir: Cache dir for Hugging Face Transformers to store/load
29
+ models
30
+ do_lower_case: If true, lowercases the input (independent if the
31
+ model is cased or not)
32
+ tokenizer_name_or_path: Name or path of the tokenizer. When
33
+ None, then model_name_or_path is used
34
+ backend: Backend used for model inference. Can be `torch`, `onnx`,
35
+ or `openvino`. Default is `torch`.
36
+ """
37
+
38
+ save_in_root: bool = True
39
+
40
+ def __init__(
41
+ self,
42
+ model_name_or_path: str,
43
+ model_args: dict[str, Any] | None = None,
44
+ tokenizer_args: dict[str, Any] | None = None,
45
+ config_args: dict[str, Any] | None = None,
46
+ cache_dir: str | None = None,
47
+ **kwargs,
48
+ ) -> None:
49
+ super().__init__()
50
+ if model_args is None:
51
+ model_args = {}
52
+ if tokenizer_args is None:
53
+ tokenizer_args = {}
54
+ if config_args is None:
55
+ config_args = {}
56
+
57
+ if not model_args.get("trust_remote_code", False):
58
+ raise ValueError(
59
+ "You need to set `trust_remote_code=True` to load this model."
60
+ )
61
+
62
+ self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
63
+ self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args)
64
+
65
+ self.tokenizer = AutoTokenizer.from_pretrained(
66
+ "answerdotai/ModernBERT-base",
67
+ cache_dir=cache_dir,
68
+ **tokenizer_args,
69
+ )
70
+
71
+ def __repr__(self) -> str:
72
+ return f"Transformer({self.get_config_dict()}) with Transformer model: {self.auto_model.__class__.__name__} "
73
+
74
+ def forward(self, features: dict[str, torch.Tensor], dataset_embeddings: Optional[torch.Tensor] = None, **kwargs) -> dict[str, torch.Tensor]:
75
+ """Returns token_embeddings, cls_token"""
76
+ # If we don't have embeddings, then run the 1st stage model.
77
+ # If we do, then run the 2nd stage model.
78
+ if dataset_embeddings is None:
79
+ sentence_embedding = self.auto_model.first_stage_model(
80
+ input_ids=features["input_ids"],
81
+ attention_mask=features["attention_mask"],
82
+ )
83
+ else:
84
+ sentence_embedding = self.auto_model.second_stage_model(
85
+ input_ids=features["input_ids"],
86
+ attention_mask=features["attention_mask"],
87
+ dataset_embeddings=dataset_embeddings,
88
+ )
89
+
90
+ features["sentence_embedding"] = sentence_embedding
91
+ return features
92
+
93
+ def get_word_embedding_dimension(self) -> int:
94
+ return self.auto_model.config.hidden_size
95
+
96
+ def tokenize(
97
+ self, texts: list[str] | list[dict] | list[tuple[str, str]], padding: str | bool = True
98
+ ) -> dict[str, torch.Tensor]:
99
+ """Tokenizes a text and maps tokens to token-ids"""
100
+ output = {}
101
+ if isinstance(texts[0], str):
102
+ to_tokenize = [texts]
103
+ elif isinstance(texts[0], dict):
104
+ to_tokenize = []
105
+ output["text_keys"] = []
106
+ for lookup in texts:
107
+ text_key, text = next(iter(lookup.items()))
108
+ to_tokenize.append(text)
109
+ output["text_keys"].append(text_key)
110
+ to_tokenize = [to_tokenize]
111
+ else:
112
+ batch1, batch2 = [], []
113
+ for text_tuple in texts:
114
+ batch1.append(text_tuple[0])
115
+ batch2.append(text_tuple[1])
116
+ to_tokenize = [batch1, batch2]
117
+
118
+ max_seq_length = self.config.max_seq_length
119
+ output.update(
120
+ self.tokenizer(
121
+ *to_tokenize,
122
+ padding=padding,
123
+ truncation="longest_first",
124
+ return_tensors="pt",
125
+ max_length=max_seq_length,
126
+ )
127
+ )
128
+ return output
129
+
130
+ def get_config_dict(self) -> dict[str, Any]:
131
+ return {}
132
+
133
+ def save(self, output_path: str, safe_serialization: bool = True) -> None:
134
+ self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization)
135
+ self.tokenizer.save_pretrained(output_path)
136
+
137
+ with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut:
138
+ json.dump(self.get_config_dict(), fOut, indent=2)
139
+
140
+ @classmethod
141
+ def load(cls, input_path: str) -> Transformer:
142
+ sbert_config_path = os.path.join(input_path, "sentence_bert_config.json")
143
+ if not os.path.exists(sbert_config_path):
144
+ return cls(model_name_or_path=input_path)
145
+
146
+ with open(sbert_config_path) as fIn:
147
+ config = json.load(fIn)
148
+ # Don't allow configs to set trust_remote_code
149
+ if "model_args" in config and "trust_remote_code" in config["model_args"]:
150
+ config["model_args"].pop("trust_remote_code")
151
+ if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
152
+ config["tokenizer_args"].pop("trust_remote_code")
153
+ if "config_args" in config and "trust_remote_code" in config["config_args"]:
154
+ config["config_args"].pop("trust_remote_code")
155
+ return cls(model_name_or_path=input_path, **config)
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 8192,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizerFast",
944
+ "unk_token": "[UNK]"
945
+ }