Lapochka365
commited on
Commit
·
1a969f2
1
Parent(s):
7b144b5
Add new model for LunarLander-v2 from lesson 1 rl
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo_lunar_1_500_000.zip +3 -0
- ppo_lunar_1_500_000/_stable_baselines3_version +1 -0
- ppo_lunar_1_500_000/data +94 -0
- ppo_lunar_1_500_000/policy.optimizer.pth +3 -0
- ppo_lunar_1_500_000/policy.pth +3 -0
- ppo_lunar_1_500_000/pytorch_variables.pth +3 -0
- ppo_lunar_1_500_000/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 277.21 +/- 21.83
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f00f93d2a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00f93d2b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00f93d2b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00f93d2c20>", "_build": "<function ActorCriticPolicy._build at 0x7f00f93d2cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f00f93d2d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00f93d2dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f00f93d2e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00f93d2ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00f93d2f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00f93d7050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f00f9425360>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652044401.5599012, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABo6ID2D0AK8Ozx5vtJiW77cN267RB63PgAAgD8AAIA/GnWLPrJUKz+OhiS+/5+5viJHTT1r1rm9AAAAAAAAAAAzM5O8XHOmP6DgHb7MnQK/ldpWvUssAr4AAAAAAAAAAFrBC77vRBE/FJJDPnq3p76nqcc8wXbLPAAAAAAAAAAAZv0IPUjfp7pU8AK6lewBueImbrpNQiQ5AACAPwAAgD9mKQG9CsU/u2Lbgzwr5Cc9L05lvCYDDD4AAIA/AACAP52hjT7qyDA/0Fn+vfWPvr6PLHc+RjB0vgAAAAAAAAAAwNyCPZRfWD+yPts9vnLevpc9sj0EMKg8AAAAAAAAAACaTzc8gZ2AvP9sNL71rl2+BcDtPK3bOT8AAIA/AACAP7M6n76jxEg/giO+PlWi876DcpS+FuvAPgAAAAAAAAAAM92APSBqgD8p/Ao+qWDuvoLGOD2kTIA8AAAAAAAAAAAAvzG9Cq86u7SgibvGk448goWYPBt/db0AAIA/AACAP4q7Zb7u/Ou8W+XJvbzvP7zGBVA+xVoSPQAAgD8AAIA/TcYBvfEWBj7Sbww+4RC9vj3FCT5ZlyW9AAAAAAAAAABGb1C+DnCCPiaroT7ri2y+EC6PPZZyDz4AAAAAAAAAAJP3Gr7aiCY/oQwVvVOst77D8wC+tCOFPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9b7xtSc9cECUhpRSlIwBbJRL1YwBdJRHQJew/LwF1Sx1fZQoaAZoCWgPQwjc1EDzuUVxQJSGlFKUaBVL4GgWR0CXsabyH2ytdX2UKGgGaAloD0MIj4zV5j8sc0CUhpRSlGgVS/poFkdAl7Gq0UoKD3V9lChoBmgJaA9DCMcrED2p7HBAlIaUUpRoFU0UAWgWR0CXscEUj9n9dX2UKGgGaAloD0MI409UNizWckCUhpRSlGgVS+1oFkdAl7K8TewcHXV9lChoBmgJaA9DCHBE96xrXnNAlIaUUpRoFU0DAWgWR0CXstLQXyiFdX2UKGgGaAloD0MIJov7j4w3ckCUhpRSlGgVS+VoFkdAl7PFyvLX+XV9lChoBmgJaA9DCOuNWmH6LXFAlIaUUpRoFU0KAWgWR0CXtDlJHy3DdX2UKGgGaAloD0MICYhJuFDUckCUhpRSlGgVTQUBaBZHQJe0ink1dgR1fZQoaAZoCWgPQwgpJQSrasxwQJSGlFKUaBVNAgFoFkdAl7T5VfeDWnV9lChoBmgJaA9DCLyS5Lm+zHBAlIaUUpRoFU0NAWgWR0CXtQpGFzuGdX2UKGgGaAloD0MIdQMF3skwckCUhpRSlGgVS/5oFkdAl7VkIcBEKHV9lChoBmgJaA9DCHiAJy1ccXJAlIaUUpRoFU0RAWgWR0CXtZxubZvldX2UKGgGaAloD0MIGXPXEvIWcUCUhpRSlGgVTRQBaBZHQJe2YQf6oEV1fZQoaAZoCWgPQwi4VnvYi01xQJSGlFKUaBVL8WgWR0CXtv+l0o0AdX2UKGgGaAloD0MI0R+aeTLscECUhpRSlGgVTR0BaBZHQJe3RwPy08h1fZQoaAZoCWgPQwh8e9egL+VwQJSGlFKUaBVNBwFoFkdAl7dYVh1DB3V9lChoBmgJaA9DCK0Yrg6AX29AlIaUUpRoFUvpaBZHQJe3gVfu1F91fZQoaAZoCWgPQwgBF2TL8uNQQJSGlFKUaBVL0GgWR0CXt/WTX8O1dX2UKGgGaAloD0MIA5gycAB+ckCUhpRSlGgVS91oFkdAl7hWICU5dXV9lChoBmgJaA9DCKYO8nrw/XFAlIaUUpRoFU0cAWgWR0CXuK1r6+FldX2UKGgGaAloD0MI/Wg4ZW6qb0CUhpRSlGgVTR0BaBZHQJe4y35N47l1fZQoaAZoCWgPQwhzofKv5VVxQJSGlFKUaBVL5mgWR0CXufV/c32mdX2UKGgGaAloD0MIfnA+dWxCckCUhpRSlGgVS+JoFkdAl7owxzq8lHV9lChoBmgJaA9DCE62gTsQgXBAlIaUUpRoFU0cAWgWR0CXuvs3Q2MsdX2UKGgGaAloD0MIo1uv6UFScECUhpRSlGgVS/NoFkdAl7spB1LamHV9lChoBmgJaA9DCO7p6o5FpnFAlIaUUpRoFU0OAWgWR0CXu9Pmgam5dX2UKGgGaAloD0MI6wJeZtirbkCUhpRSlGgVTQABaBZHQJe77P4VRDV1fZQoaAZoCWgPQwjWO9wODRdzQJSGlFKUaBVNBwFoFkdAl7xNAPd2xXV9lChoBmgJaA9DCBH+RdDYnHJAlIaUUpRoFUvbaBZHQJe8iOp84Px1fZQoaAZoCWgPQwgJjWDj+sNvQJSGlFKUaBVNAwFoFkdAl7z5WmxdIHV9lChoBmgJaA9DCJwWvOirvHBAlIaUUpRoFU0AAWgWR0CXvbovi97GdX2UKGgGaAloD0MITFXa4toYcUCUhpRSlGgVS+1oFkdAl74HbAUL2HV9lChoBmgJaA9DCItrfCZ7yG9AlIaUUpRoFU0PAWgWR0CXvi6xxDLKdX2UKGgGaAloD0MIoKaWrfWdckCUhpRSlGgVS/FoFkdAl9KaTOgQH3V9lChoBmgJaA9DCLFqEOa233BAlIaUUpRoFU0vAWgWR0CX0uHmig01dX2UKGgGaAloD0MIxXQhVv+PcECUhpRSlGgVTRUBaBZHQJfTLpJPIn11fZQoaAZoCWgPQwiHF0SkpmpwQJSGlFKUaBVL/2gWR0CX1ElNDc/MdX2UKGgGaAloD0MIm1lLAakmckCUhpRSlGgVTQEBaBZHQJfUkR28qWl1fZQoaAZoCWgPQwhMqrab4JRvQJSGlFKUaBVNAwFoFkdAl9V9RekYXXV9lChoBmgJaA9DCN2yQ/wDBHBAlIaUUpRoFUvqaBZHQJfVr0SRKYl1fZQoaAZoCWgPQwhtrprnCL1xQJSGlFKUaBVNEQFoFkdAl9Ybb+Lm63V9lChoBmgJaA9DCMaLhSFymHFAlIaUUpRoFUvwaBZHQJfWZDE3sHB1fZQoaAZoCWgPQwjPpE3VfVFyQJSGlFKUaBVNdAFoFkdAl9ZgkxASnXV9lChoBmgJaA9DCPpDM0/u+3NAlIaUUpRoFUvTaBZHQJfXIOJ+Dvp1fZQoaAZoCWgPQwg+kpIeBkZxQJSGlFKUaBVNKAFoFkdAl9d+1fE4vXV9lChoBmgJaA9DCK1OzlDcf3FAlIaUUpRoFU0TAWgWR0CX15xIre67dX2UKGgGaAloD0MImGw82CIXcECUhpRSlGgVTQcBaBZHQJfXwomXw9d1fZQoaAZoCWgPQwjhtUsbDhdxQJSGlFKUaBVL8mgWR0CX2Dvg3tKJdX2UKGgGaAloD0MIIQTkS2jkcECUhpRSlGgVTQABaBZHQJfYvkU9IPN1fZQoaAZoCWgPQwhZ3eo5qVBxQJSGlFKUaBVL/WgWR0CX2V6q814xdX2UKGgGaAloD0MIzPEKRA+ocECUhpRSlGgVTREBaBZHQJfaL/FR51N1fZQoaAZoCWgPQwiOrPwymNFsQJSGlFKUaBVL7GgWR0CX2uKyfL9udX2UKGgGaAloD0MIldOekvNVckCUhpRSlGgVTSkBaBZHQJfbFmWdEst1fZQoaAZoCWgPQwh+4CpPYNhwQJSGlFKUaBVL3GgWR0CX20mGM4tIdX2UKGgGaAloD0MIueLiqFymc0CUhpRSlGgVS+doFkdAl9u/J/5Ly3V9lChoBmgJaA9DCInTSbZ6z3BAlIaUUpRoFU0kAWgWR0CX3B29tdiVdX2UKGgGaAloD0MIfnTqyicKcUCUhpRSlGgVS/poFkdAl9yn1WbPQnV9lChoBmgJaA9DCCrHZHF/V3FAlIaUUpRoFUvRaBZHQJfc8Ku0TlF1fZQoaAZoCWgPQwhdcAZ/v99wQJSGlFKUaBVNAwFoFkdAl90slw97nnV9lChoBmgJaA9DCJ2AJsJGL3BAlIaUUpRoFU0VAWgWR0CX3avG6wt8dX2UKGgGaAloD0MIfH+D9ipEckCUhpRSlGgVS+RoFkdAl922RA8jiXV9lChoBmgJaA9DCAtdiUD1cnFAlIaUUpRoFU0BAWgWR0CX3eMrmQr+dX2UKGgGaAloD0MItAJDVncIcUCUhpRSlGgVS9loFkdAl93x+fAbhnV9lChoBmgJaA9DCELtt3Yi6W9AlIaUUpRoFU0LAWgWR0CX3nDTz/ZNdX2UKGgGaAloD0MIti41Qj9ucUCUhpRSlGgVS+FoFkdAl96KH446wXV9lChoBmgJaA9DCNap8j1jDHFAlIaUUpRoFUv4aBZHQJffo2LpA2R1fZQoaAZoCWgPQwjvcaYJW1FyQJSGlFKUaBVL7WgWR0CX4BhKUVzqdX2UKGgGaAloD0MIExCTcCHVcECUhpRSlGgVS/VoFkdAl+FbIgeRxXV9lChoBmgJaA9DCOo9ldOe/VhAlIaUUpRoFUuSaBZHQJfhWbYsd1d1fZQoaAZoCWgPQwh+Uu3TMdJyQJSGlFKUaBVNCgFoFkdAl+G4k/r0KHV9lChoBmgJaA9DCP1qDhCMoHFAlIaUUpRoFU0eAWgWR0CX4hG4ZuQ7dX2UKGgGaAloD0MIBrr2BbRdckCUhpRSlGgVS/RoFkdAl+Ip6po9LnV9lChoBmgJaA9DCJAV/DZEWnFAlIaUUpRoFU0XAWgWR0CX4q9Brvb5dX2UKGgGaAloD0MI5L7VOjGAcUCUhpRSlGgVS/FoFkdAl+LPIsAeaXV9lChoBmgJaA9DCC9NEeB0W29AlIaUUpRoFU0LAWgWR0CX47bedkJ8dX2UKGgGaAloD0MI+7K0U3MRbUCUhpRSlGgVTQEBaBZHQJfj/x4IKMN1fZQoaAZoCWgPQwgJ/reSnUtvQJSGlFKUaBVL/2gWR0CX5CAhje9BdX2UKGgGaAloD0MI8djPYqmXbUCUhpRSlGgVTQ4BaBZHQJfkS0IC2c91fZQoaAZoCWgPQwhHBU62AT9wQJSGlFKUaBVL8GgWR0CX5GX1J17qdX2UKGgGaAloD0MIOuenOM61ckCUhpRSlGgVTUABaBZHQJfkliCrcTJ1fZQoaAZoCWgPQwhEUDV6tXNwQJSGlFKUaBVNAwFoFkdAl+TpyuIRAnV9lChoBmgJaA9DCBe5p6u7OHFAlIaUUpRoFU0IAWgWR0CX5jnuy/sWdX2UKGgGaAloD0MILIL/rSQ1cECUhpRSlGgVS/hoFkdAl+ZRllK9PHV9lChoBmgJaA9DCDPd66S+JEtAlIaUUpRoFUuiaBZHQJfm0nrpqyp1fZQoaAZoCWgPQwjAdcWM8OZBQJSGlFKUaBVL2WgWR0CX55amGdqddX2UKGgGaAloD0MIjbW/sz0wckCUhpRSlGgVS/xoFkdAl+e5PZZjhHV9lChoBmgJaA9DCJ5BQ/8EKHFAlIaUUpRoFU0LAWgWR0CX6CLH+6y0dX2UKGgGaAloD0MIqtVXVwWHbkCUhpRSlGgVS/9oFkdAl+gxubZvk3V9lChoBmgJaA9DCG8Sg8BKg3JAlIaUUpRoFUvqaBZHQJfol2aDwph1fZQoaAZoCWgPQwhpVyHl53NwQJSGlFKUaBVNCgFoFkdAl+jCeAd4mnV9lChoBmgJaA9DCKLT825sgnFAlIaUUpRoFUvraBZHQJfp5XHR1HR1fZQoaAZoCWgPQwjJ5xVP/QByQJSGlFKUaBVL6mgWR0CX6jCHARChdX2UKGgGaAloD0MISra6nBKucECUhpRSlGgVS/loFkdAl+pm7voeP3V9lChoBmgJaA9DCFMJT+j1onFAlIaUUpRoFUvuaBZHQJfqnDpC8e11fZQoaAZoCWgPQwh1sWmlUCFzQJSGlFKUaBVNHAFoFkdAl+rlYlpoK3V9lChoBmgJaA9DCMwqbAa4nk9AlIaUUpRoFUu4aBZHQJfrC5paibl1fZQoaAZoCWgPQwjRdHYyuKVvQJSGlFKUaBVNAAFoFkdAl+thx95Qg3V9lChoBmgJaA9DCGHfTiJCn3JAlIaUUpRoFU0lAWgWR0CX67sHjZL7dX2UKGgGaAloD0MI4bIKmwEKOECUhpRSlGgVS8BoFkdAl+xk9ECvHXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo_lunar_1_500_000.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d8fe832245bf5d333878e7ab2b063de762747b920bcc7f3dd505b5f03d0ee79
|
3 |
+
size 144050
|
ppo_lunar_1_500_000/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo_lunar_1_500_000/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f00f93d2a70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00f93d2b00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00f93d2b90>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00f93d2c20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f00f93d2cb0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f00f93d2d40>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00f93d2dd0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f00f93d2e60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00f93d2ef0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00f93d2f80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00f93d7050>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f00f9425360>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1507328,
|
46 |
+
"_total_timesteps": 1500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652044401.5599012,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABo6ID2D0AK8Ozx5vtJiW77cN267RB63PgAAgD8AAIA/GnWLPrJUKz+OhiS+/5+5viJHTT1r1rm9AAAAAAAAAAAzM5O8XHOmP6DgHb7MnQK/ldpWvUssAr4AAAAAAAAAAFrBC77vRBE/FJJDPnq3p76nqcc8wXbLPAAAAAAAAAAAZv0IPUjfp7pU8AK6lewBueImbrpNQiQ5AACAPwAAgD9mKQG9CsU/u2Lbgzwr5Cc9L05lvCYDDD4AAIA/AACAP52hjT7qyDA/0Fn+vfWPvr6PLHc+RjB0vgAAAAAAAAAAwNyCPZRfWD+yPts9vnLevpc9sj0EMKg8AAAAAAAAAACaTzc8gZ2AvP9sNL71rl2+BcDtPK3bOT8AAIA/AACAP7M6n76jxEg/giO+PlWi876DcpS+FuvAPgAAAAAAAAAAM92APSBqgD8p/Ao+qWDuvoLGOD2kTIA8AAAAAAAAAAAAvzG9Cq86u7SgibvGk448goWYPBt/db0AAIA/AACAP4q7Zb7u/Ou8W+XJvbzvP7zGBVA+xVoSPQAAgD8AAIA/TcYBvfEWBj7Sbww+4RC9vj3FCT5ZlyW9AAAAAAAAAABGb1C+DnCCPiaroT7ri2y+EC6PPZZyDz4AAAAAAAAAAJP3Gr7aiCY/oQwVvVOst77D8wC+tCOFPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVTxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9b7xtSc9cECUhpRSlIwBbJRL1YwBdJRHQJew/LwF1Sx1fZQoaAZoCWgPQwjc1EDzuUVxQJSGlFKUaBVL4GgWR0CXsabyH2ytdX2UKGgGaAloD0MIj4zV5j8sc0CUhpRSlGgVS/poFkdAl7Gq0UoKD3V9lChoBmgJaA9DCMcrED2p7HBAlIaUUpRoFU0UAWgWR0CXscEUj9n9dX2UKGgGaAloD0MI409UNizWckCUhpRSlGgVS+1oFkdAl7K8TewcHXV9lChoBmgJaA9DCHBE96xrXnNAlIaUUpRoFU0DAWgWR0CXstLQXyiFdX2UKGgGaAloD0MIJov7j4w3ckCUhpRSlGgVS+VoFkdAl7PFyvLX+XV9lChoBmgJaA9DCOuNWmH6LXFAlIaUUpRoFU0KAWgWR0CXtDlJHy3DdX2UKGgGaAloD0MICYhJuFDUckCUhpRSlGgVTQUBaBZHQJe0ink1dgR1fZQoaAZoCWgPQwgpJQSrasxwQJSGlFKUaBVNAgFoFkdAl7T5VfeDWnV9lChoBmgJaA9DCLyS5Lm+zHBAlIaUUpRoFU0NAWgWR0CXtQpGFzuGdX2UKGgGaAloD0MIdQMF3skwckCUhpRSlGgVS/5oFkdAl7VkIcBEKHV9lChoBmgJaA9DCHiAJy1ccXJAlIaUUpRoFU0RAWgWR0CXtZxubZvldX2UKGgGaAloD0MIGXPXEvIWcUCUhpRSlGgVTRQBaBZHQJe2YQf6oEV1fZQoaAZoCWgPQwi4VnvYi01xQJSGlFKUaBVL8WgWR0CXtv+l0o0AdX2UKGgGaAloD0MI0R+aeTLscECUhpRSlGgVTR0BaBZHQJe3RwPy08h1fZQoaAZoCWgPQwh8e9egL+VwQJSGlFKUaBVNBwFoFkdAl7dYVh1DB3V9lChoBmgJaA9DCK0Yrg6AX29AlIaUUpRoFUvpaBZHQJe3gVfu1F91fZQoaAZoCWgPQwgBF2TL8uNQQJSGlFKUaBVL0GgWR0CXt/WTX8O1dX2UKGgGaAloD0MIA5gycAB+ckCUhpRSlGgVS91oFkdAl7hWICU5dXV9lChoBmgJaA9DCKYO8nrw/XFAlIaUUpRoFU0cAWgWR0CXuK1r6+FldX2UKGgGaAloD0MI/Wg4ZW6qb0CUhpRSlGgVTR0BaBZHQJe4y35N47l1fZQoaAZoCWgPQwhzofKv5VVxQJSGlFKUaBVL5mgWR0CXufV/c32mdX2UKGgGaAloD0MIfnA+dWxCckCUhpRSlGgVS+JoFkdAl7owxzq8lHV9lChoBmgJaA9DCE62gTsQgXBAlIaUUpRoFU0cAWgWR0CXuvs3Q2MsdX2UKGgGaAloD0MIo1uv6UFScECUhpRSlGgVS/NoFkdAl7spB1LamHV9lChoBmgJaA9DCO7p6o5FpnFAlIaUUpRoFU0OAWgWR0CXu9Pmgam5dX2UKGgGaAloD0MI6wJeZtirbkCUhpRSlGgVTQABaBZHQJe77P4VRDV1fZQoaAZoCWgPQwjWO9wODRdzQJSGlFKUaBVNBwFoFkdAl7xNAPd2xXV9lChoBmgJaA9DCBH+RdDYnHJAlIaUUpRoFUvbaBZHQJe8iOp84Px1fZQoaAZoCWgPQwgJjWDj+sNvQJSGlFKUaBVNAwFoFkdAl7z5WmxdIHV9lChoBmgJaA9DCJwWvOirvHBAlIaUUpRoFU0AAWgWR0CXvbovi97GdX2UKGgGaAloD0MITFXa4toYcUCUhpRSlGgVS+1oFkdAl74HbAUL2HV9lChoBmgJaA9DCItrfCZ7yG9AlIaUUpRoFU0PAWgWR0CXvi6xxDLKdX2UKGgGaAloD0MIoKaWrfWdckCUhpRSlGgVS/FoFkdAl9KaTOgQH3V9lChoBmgJaA9DCLFqEOa233BAlIaUUpRoFU0vAWgWR0CX0uHmig01dX2UKGgGaAloD0MIxXQhVv+PcECUhpRSlGgVTRUBaBZHQJfTLpJPIn11fZQoaAZoCWgPQwiHF0SkpmpwQJSGlFKUaBVL/2gWR0CX1ElNDc/MdX2UKGgGaAloD0MIm1lLAakmckCUhpRSlGgVTQEBaBZHQJfUkR28qWl1fZQoaAZoCWgPQwhMqrab4JRvQJSGlFKUaBVNAwFoFkdAl9V9RekYXXV9lChoBmgJaA9DCN2yQ/wDBHBAlIaUUpRoFUvqaBZHQJfVr0SRKYl1fZQoaAZoCWgPQwhtrprnCL1xQJSGlFKUaBVNEQFoFkdAl9Ybb+Lm63V9lChoBmgJaA9DCMaLhSFymHFAlIaUUpRoFUvwaBZHQJfWZDE3sHB1fZQoaAZoCWgPQwjPpE3VfVFyQJSGlFKUaBVNdAFoFkdAl9ZgkxASnXV9lChoBmgJaA9DCPpDM0/u+3NAlIaUUpRoFUvTaBZHQJfXIOJ+Dvp1fZQoaAZoCWgPQwg+kpIeBkZxQJSGlFKUaBVNKAFoFkdAl9d+1fE4vXV9lChoBmgJaA9DCK1OzlDcf3FAlIaUUpRoFU0TAWgWR0CX15xIre67dX2UKGgGaAloD0MImGw82CIXcECUhpRSlGgVTQcBaBZHQJfXwomXw9d1fZQoaAZoCWgPQwjhtUsbDhdxQJSGlFKUaBVL8mgWR0CX2Dvg3tKJdX2UKGgGaAloD0MIIQTkS2jkcECUhpRSlGgVTQABaBZHQJfYvkU9IPN1fZQoaAZoCWgPQwhZ3eo5qVBxQJSGlFKUaBVL/WgWR0CX2V6q814xdX2UKGgGaAloD0MIzPEKRA+ocECUhpRSlGgVTREBaBZHQJfaL/FR51N1fZQoaAZoCWgPQwiOrPwymNFsQJSGlFKUaBVL7GgWR0CX2uKyfL9udX2UKGgGaAloD0MIldOekvNVckCUhpRSlGgVTSkBaBZHQJfbFmWdEst1fZQoaAZoCWgPQwh+4CpPYNhwQJSGlFKUaBVL3GgWR0CX20mGM4tIdX2UKGgGaAloD0MIueLiqFymc0CUhpRSlGgVS+doFkdAl9u/J/5Ly3V9lChoBmgJaA9DCInTSbZ6z3BAlIaUUpRoFU0kAWgWR0CX3B29tdiVdX2UKGgGaAloD0MIfnTqyicKcUCUhpRSlGgVS/poFkdAl9yn1WbPQnV9lChoBmgJaA9DCCrHZHF/V3FAlIaUUpRoFUvRaBZHQJfc8Ku0TlF1fZQoaAZoCWgPQwhdcAZ/v99wQJSGlFKUaBVNAwFoFkdAl90slw97nnV9lChoBmgJaA9DCJ2AJsJGL3BAlIaUUpRoFU0VAWgWR0CX3avG6wt8dX2UKGgGaAloD0MIfH+D9ipEckCUhpRSlGgVS+RoFkdAl922RA8jiXV9lChoBmgJaA9DCAtdiUD1cnFAlIaUUpRoFU0BAWgWR0CX3eMrmQr+dX2UKGgGaAloD0MItAJDVncIcUCUhpRSlGgVS9loFkdAl93x+fAbhnV9lChoBmgJaA9DCELtt3Yi6W9AlIaUUpRoFU0LAWgWR0CX3nDTz/ZNdX2UKGgGaAloD0MIti41Qj9ucUCUhpRSlGgVS+FoFkdAl96KH446wXV9lChoBmgJaA9DCNap8j1jDHFAlIaUUpRoFUv4aBZHQJffo2LpA2R1fZQoaAZoCWgPQwjvcaYJW1FyQJSGlFKUaBVL7WgWR0CX4BhKUVzqdX2UKGgGaAloD0MIExCTcCHVcECUhpRSlGgVS/VoFkdAl+FbIgeRxXV9lChoBmgJaA9DCOo9ldOe/VhAlIaUUpRoFUuSaBZHQJfhWbYsd1d1fZQoaAZoCWgPQwh+Uu3TMdJyQJSGlFKUaBVNCgFoFkdAl+G4k/r0KHV9lChoBmgJaA9DCP1qDhCMoHFAlIaUUpRoFU0eAWgWR0CX4hG4ZuQ7dX2UKGgGaAloD0MIBrr2BbRdckCUhpRSlGgVS/RoFkdAl+Ip6po9LnV9lChoBmgJaA9DCJAV/DZEWnFAlIaUUpRoFU0XAWgWR0CX4q9Brvb5dX2UKGgGaAloD0MI5L7VOjGAcUCUhpRSlGgVS/FoFkdAl+LPIsAeaXV9lChoBmgJaA9DCC9NEeB0W29AlIaUUpRoFU0LAWgWR0CX47bedkJ8dX2UKGgGaAloD0MI+7K0U3MRbUCUhpRSlGgVTQEBaBZHQJfj/x4IKMN1fZQoaAZoCWgPQwgJ/reSnUtvQJSGlFKUaBVL/2gWR0CX5CAhje9BdX2UKGgGaAloD0MI8djPYqmXbUCUhpRSlGgVTQ4BaBZHQJfkS0IC2c91fZQoaAZoCWgPQwhHBU62AT9wQJSGlFKUaBVL8GgWR0CX5GX1J17qdX2UKGgGaAloD0MIOuenOM61ckCUhpRSlGgVTUABaBZHQJfkliCrcTJ1fZQoaAZoCWgPQwhEUDV6tXNwQJSGlFKUaBVNAwFoFkdAl+TpyuIRAnV9lChoBmgJaA9DCBe5p6u7OHFAlIaUUpRoFU0IAWgWR0CX5jnuy/sWdX2UKGgGaAloD0MILIL/rSQ1cECUhpRSlGgVS/hoFkdAl+ZRllK9PHV9lChoBmgJaA9DCDPd66S+JEtAlIaUUpRoFUuiaBZHQJfm0nrpqyp1fZQoaAZoCWgPQwjAdcWM8OZBQJSGlFKUaBVL2WgWR0CX55amGdqddX2UKGgGaAloD0MIjbW/sz0wckCUhpRSlGgVS/xoFkdAl+e5PZZjhHV9lChoBmgJaA9DCJ5BQ/8EKHFAlIaUUpRoFU0LAWgWR0CX6CLH+6y0dX2UKGgGaAloD0MIqtVXVwWHbkCUhpRSlGgVS/9oFkdAl+gxubZvk3V9lChoBmgJaA9DCG8Sg8BKg3JAlIaUUpRoFUvqaBZHQJfol2aDwph1fZQoaAZoCWgPQwhpVyHl53NwQJSGlFKUaBVNCgFoFkdAl+jCeAd4mnV9lChoBmgJaA9DCKLT825sgnFAlIaUUpRoFUvraBZHQJfp5XHR1HR1fZQoaAZoCWgPQwjJ5xVP/QByQJSGlFKUaBVL6mgWR0CX6jCHARChdX2UKGgGaAloD0MISra6nBKucECUhpRSlGgVS/loFkdAl+pm7voeP3V9lChoBmgJaA9DCFMJT+j1onFAlIaUUpRoFUvuaBZHQJfqnDpC8e11fZQoaAZoCWgPQwh1sWmlUCFzQJSGlFKUaBVNHAFoFkdAl+rlYlpoK3V9lChoBmgJaA9DCMwqbAa4nk9AlIaUUpRoFUu4aBZHQJfrC5paibl1fZQoaAZoCWgPQwjRdHYyuKVvQJSGlFKUaBVNAAFoFkdAl+thx95Qg3V9lChoBmgJaA9DCGHfTiJCn3JAlIaUUpRoFU0lAWgWR0CX67sHjZL7dX2UKGgGaAloD0MI4bIKmwEKOECUhpRSlGgVS8BoFkdAl+xk9ECvHXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 368,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo_lunar_1_500_000/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78353035b8605750444e889cafab707b2826163c1d60ef7d9fb07bb30d0fa74a
|
3 |
+
size 84893
|
ppo_lunar_1_500_000/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65a08b134353088a0b91f0191b4b9292d20685de431320bfe44f84b43fd2d795
|
3 |
+
size 43201
|
ppo_lunar_1_500_000/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunar_1_500_000/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67cedde44ebf5527ba66266b3d9ce01d29e8239e9575764f09c340daf4ce6a7b
|
3 |
+
size 198282
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 277.2134482067614, "std_reward": 21.834087001728207, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T21:39:17.603437"}
|