Lansechen commited on
Commit
ac920ef
·
verified ·
1 Parent(s): ed22ee3

Model save

Browse files
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-3B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen2.5-3B-Instruct-Distill-bs17k-fem600-batch32-epoch3-8192
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-3B-Instruct-Distill-bs17k-fem600-batch32-epoch3-8192
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="Lansechen/Qwen2.5-3B-Instruct-Distill-bs17k-fem600-batch32-epoch3-8192", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenran1995-the-chinese-university-of-hong-kong/huggingface/runs/1qf8mk8w)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0.dev0
38
+ - Transformers: 4.49.0
39
+ - Pytorch: 2.5.1+cu121
40
+ - Datasets: 3.3.1
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 92935576092672.0,
3
+ "train_loss": 0.7762386950235518,
4
+ "train_runtime": 1655.1689,
5
+ "train_samples": 2424,
6
+ "train_samples_per_second": 4.899,
7
+ "train_steps_per_second": 0.038
8
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0"
14
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 92935576092672.0,
3
+ "train_loss": 0.7762386950235518,
4
+ "train_runtime": 1655.1689,
5
+ "train_samples": 2424,
6
+ "train_samples_per_second": 4.899,
7
+ "train_steps_per_second": 0.038
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.899408284023669,
5
+ "eval_steps": 500,
6
+ "global_step": 63,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.23668639053254437,
13
+ "grad_norm": 2.409322500228882,
14
+ "learning_rate": 4.996811065272715e-05,
15
+ "loss": 1.0822,
16
+ "mean_token_accuracy": 0.7053477883338928,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.47337278106508873,
21
+ "grad_norm": 0.9640182852745056,
22
+ "learning_rate": 4.8861446190538576e-05,
23
+ "loss": 0.921,
24
+ "mean_token_accuracy": 0.7317641347646713,
25
+ "step": 10
26
+ },
27
+ {
28
+ "epoch": 0.7100591715976331,
29
+ "grad_norm": 0.7025872468948364,
30
+ "learning_rate": 4.624956317935659e-05,
31
+ "loss": 0.8498,
32
+ "mean_token_accuracy": 0.7442429676651955,
33
+ "step": 15
34
+ },
35
+ {
36
+ "epoch": 0.9467455621301775,
37
+ "grad_norm": 0.46222633123397827,
38
+ "learning_rate": 4.2316506028963374e-05,
39
+ "loss": 0.8105,
40
+ "mean_token_accuracy": 0.75324527323246,
41
+ "step": 20
42
+ },
43
+ {
44
+ "epoch": 1.1420118343195267,
45
+ "grad_norm": 0.510589063167572,
46
+ "learning_rate": 3.733941471032425e-05,
47
+ "loss": 0.7696,
48
+ "mean_token_accuracy": 0.7617284547198903,
49
+ "step": 25
50
+ },
51
+ {
52
+ "epoch": 1.378698224852071,
53
+ "grad_norm": 0.37975624203681946,
54
+ "learning_rate": 3.1668996291960073e-05,
55
+ "loss": 0.7509,
56
+ "mean_token_accuracy": 0.7663201123476029,
57
+ "step": 30
58
+ },
59
+ {
60
+ "epoch": 1.6153846153846154,
61
+ "grad_norm": 0.3334354758262634,
62
+ "learning_rate": 2.570481262505563e-05,
63
+ "loss": 0.7224,
64
+ "mean_token_accuracy": 0.7735484451055527,
65
+ "step": 35
66
+ },
67
+ {
68
+ "epoch": 1.8520710059171597,
69
+ "grad_norm": 0.2994464933872223,
70
+ "learning_rate": 1.986712551234432e-05,
71
+ "loss": 0.7218,
72
+ "mean_token_accuracy": 0.7732948541641236,
73
+ "step": 40
74
+ },
75
+ {
76
+ "epoch": 2.0473372781065087,
77
+ "grad_norm": 0.7119457721710205,
78
+ "learning_rate": 1.4567283270175847e-05,
79
+ "loss": 0.7124,
80
+ "mean_token_accuracy": 0.7780754186890342,
81
+ "step": 45
82
+ },
83
+ {
84
+ "epoch": 2.2840236686390534,
85
+ "grad_norm": 0.3027782440185547,
86
+ "learning_rate": 1.0178735372827107e-05,
87
+ "loss": 0.6834,
88
+ "mean_token_accuracy": 0.7832115352153778,
89
+ "step": 50
90
+ },
91
+ {
92
+ "epoch": 2.5207100591715976,
93
+ "grad_norm": 0.2431010901927948,
94
+ "learning_rate": 7.010717610764453e-06,
95
+ "loss": 0.682,
96
+ "mean_token_accuracy": 0.7827403783798218,
97
+ "step": 55
98
+ },
99
+ {
100
+ "epoch": 2.757396449704142,
101
+ "grad_norm": 0.23020850121974945,
102
+ "learning_rate": 5.286462018769748e-06,
103
+ "loss": 0.673,
104
+ "mean_token_accuracy": 0.7855649277567863,
105
+ "step": 60
106
+ },
107
+ {
108
+ "epoch": 2.899408284023669,
109
+ "mean_token_accuracy": 0.785752405722936,
110
+ "step": 63,
111
+ "total_flos": 92935576092672.0,
112
+ "train_loss": 0.7762386950235518,
113
+ "train_runtime": 1655.1689,
114
+ "train_samples_per_second": 4.899,
115
+ "train_steps_per_second": 0.038
116
+ }
117
+ ],
118
+ "logging_steps": 5,
119
+ "max_steps": 63,
120
+ "num_input_tokens_seen": 0,
121
+ "num_train_epochs": 3,
122
+ "save_steps": 100,
123
+ "stateful_callbacks": {
124
+ "TrainerControl": {
125
+ "args": {
126
+ "should_epoch_stop": false,
127
+ "should_evaluate": false,
128
+ "should_log": false,
129
+ "should_save": true,
130
+ "should_training_stop": true
131
+ },
132
+ "attributes": {}
133
+ }
134
+ },
135
+ "total_flos": 92935576092672.0,
136
+ "train_batch_size": 4,
137
+ "trial_name": null,
138
+ "trial_params": null
139
+ }