--- library_name: transformers license: mit datasets: - galsenai/centralized_wolof_french_translation_data language: - wo - fr base_model: - facebook/nllb-200-distilled-600M pipeline_tag: translation --- # Model Card: NLLB-200 French-Wolof(πŸ‡«πŸ‡·β†”οΈπŸ‡ΈπŸ‡³) Translation Model ## Model Details ### Model Description A fine-tuned version of Meta's NLLB-200 (600M distilled) model specialized for French to Wolof translation. This model was trained to improve accessibility of content between French and Wolof languages. - **Developed by:** Lahad - **Model type:** Sequence-to-Sequence Translation Model - **Language(s):** French (fr_Latn) ↔️ Wolof (wol_Latn) - **License:** CC-BY-NC-4.0 - **Finetuned from model:** facebook/nllb-200-distilled-600M ### Model Sources - **Repository:** [Hugging Face - Lahad/nllb200-francais-wolof](https://huggingface.co/Lahad/nllb200-francais-wolof) - **GitHub:** [Fine-tuning NLLB-200 for French-Wolof](https://github.com/LahadMbacke/Fine-tuning_facebook-nllb-200-distilled-600M_French_to_Wolof) ## Uses ### Direct Use - Text translation between French and Wolof - Content localization - Language learning assistance - Cross-cultural communication ### Out-of-Scope Use - Commercial use without proper licensing - Translation of highly technical or specialized content - Legal or medical document translation where professional human translation is required - Real-time speech translation ## Bias, Risks, and Limitations 1. Language Variety Limitations: - Limited coverage of regional Wolof dialects - May not handle cultural nuances effectively 2. Technical Limitations: - Maximum context window of 128 tokens - Reduced performance on technical/specialized content - May struggle with informal language and slang 3. Potential Biases: - Training data may reflect cultural biases - May perform better on standard/formal language ## Recommendations - Use for general communication and content translation - Verify translations for critical communications - Consider regional language variations - Implement human review for sensitive content - Test translations in intended context before deployment ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Lahad/nllb200-francais-wolof") model = AutoModelForSeq2SeqLM.from_pretrained("Lahad/nllb200-francais-wolof") # Translation function def translate(text, max_length=128): inputs = tokenizer( text, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt" ) outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], forced_bos_token_id=tokenizer.convert_tokens_to_ids("wol_Latn"), max_length=max_length ) return tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ## Training Details ### Training Data - **Dataset:** galsenai/centralized_wolof_french_translation_data - **Split:** 80% training, 20% testing - **Format:** JSON pairs of French and Wolof translations ### Training Procedure #### Preprocessing - Dynamic tokenization with padding - Maximum sequence length: 128 tokens - Source/target language tags: fr_Latn/wol_Latn #### Training Hyperparameters - Learning rate: 2e-5 - Batch size: 8 per device - Training epochs: 3 - FP16 training: Enabled - Evaluation strategy: Per epoch ## Evaluation ### Testing Data, Factors & Metrics - **Testing Data:** 20% of dataset - **Metrics:** - **Cloud Provider:** - **Evaluation Factors:** - Translation accuracy - Semantic preservation - Grammar correctness ## Environmental Impact - **Hardware Type:** NVIDIA T4 GPU - **Hours used:** 5 - **Cloud Provider:** [Not Specified] - **Compute Region:** [Not Specified] - **Carbon Emitted:** [Not Calculated] ## Technical Specifications ### Model Architecture and Objective - Architecture: NLLB-200 (Distilled 600M version) - Objective: Neural Machine Translation - Parameters: 600M - Context Window: 128 tokens ### Compute Infrastructure - Training Hardware: NVIDIA T4 GPU - Training Time: 5 hours - Software Framework: Hugging Face Transformers ## Model Card Contact For questions about this model, please create an issue on the model's Hugging Face repository.