Update README.md
Browse files
README.md
CHANGED
@@ -9,28 +9,19 @@ library_name: transformers
|
|
9 |
|
10 |
# LLäMmlein 120M
|
11 |
|
12 |
-
This is a German Tinyllama 120M language model trained from scratch using the
|
13 |
-
|
14 |
-
|
15 |
|
16 |
### Usage
|
17 |
|
18 |
```python
|
19 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
20 |
|
21 |
-
model = AutoModelForCausalLM.from_pretrained("LSX-UniWue/
|
22 |
|
23 |
-
tokenizer = AutoTokenizer.from_pretrained("LSX-UniWue/
|
24 |
```
|
25 |
|
26 |
|
27 |
### Performance
|
28 |
-
We evaluated our model on the [SuperGLEBer](https://lsx-uniwue.github.io/SuperGLEBer-site/) benchmark.
|
29 |
-
|
30 |
-
| Task Type | Task Name | Metric | Score |
|
31 |
-
|---------------------|--------------|----------|-------|
|
32 |
-
| Classification | NLI | Accuracy | 0.629 |
|
33 |
-
| Classification | DB Aspect | micro F1 | 0.517 |
|
34 |
-
| Sequence Tagging | NER Europarl | micro F1 | 0.538 |
|
35 |
-
| Sentence Similarity | Pawsx | Pearson | 0.489 |
|
36 |
-
| Question Answering | MLQA | F1 | 0.846 |
|
|
|
9 |
|
10 |
# LLäMmlein 120M
|
11 |
|
12 |
+
This is a German Tinyllama 120M language model trained from scratch using the [Tinyllama](https://github.com/jzhang38/TinyLlama) codebase on the German portion of [RedPajama V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2).
|
13 |
+
Find more details on our [page](https://www.informatik.uni-wuerzburg.de/datascience/projects/nlp/llammlein/)!
|
|
|
14 |
|
15 |
### Usage
|
16 |
|
17 |
```python
|
18 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
19 |
|
20 |
+
model = AutoModelForCausalLM.from_pretrained("LSX-UniWue/LLaMmlein_120M")
|
21 |
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("LSX-UniWue/LLaMmlein_120M")
|
23 |
```
|
24 |
|
25 |
|
26 |
### Performance
|
27 |
+
We evaluated our model on the [SuperGLEBer](https://lsx-uniwue.github.io/SuperGLEBer-site/) benchmark.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|