JanPf commited on
Commit
dfe7dac
·
verified ·
1 Parent(s): 804e61f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -14
README.md CHANGED
@@ -9,28 +9,19 @@ library_name: transformers
9
 
10
  # LLäMmlein 120M
11
 
12
- This is a German Tinyllama 120M language model trained from scratch using the
13
- the [Tinyllama](https://github.com/jzhang38/TinyLlama) codebase on the German portion of [RedPajama V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2).
14
-
15
 
16
  ### Usage
17
 
18
  ```python
19
  from transformers import AutoModelForCausalLM, AutoTokenizer
20
 
21
- model = AutoModelForCausalLM.from_pretrained("LSX-UniWue/LLaMmlein_120m")
22
 
23
- tokenizer = AutoTokenizer.from_pretrained("LSX-UniWue/LLaMmlein_120m")
24
  ```
25
 
26
 
27
  ### Performance
28
- We evaluated our model on the [SuperGLEBer](https://lsx-uniwue.github.io/SuperGLEBer-site/) benchmark.
29
-
30
- | Task Type | Task Name | Metric | Score |
31
- |---------------------|--------------|----------|-------|
32
- | Classification | NLI | Accuracy | 0.629 |
33
- | Classification | DB Aspect | micro F1 | 0.517 |
34
- | Sequence Tagging | NER Europarl | micro F1 | 0.538 |
35
- | Sentence Similarity | Pawsx | Pearson | 0.489 |
36
- | Question Answering | MLQA | F1 | 0.846 |
 
9
 
10
  # LLäMmlein 120M
11
 
12
+ This is a German Tinyllama 120M language model trained from scratch using the [Tinyllama](https://github.com/jzhang38/TinyLlama) codebase on the German portion of [RedPajama V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2).
13
+ Find more details on our [page](https://www.informatik.uni-wuerzburg.de/datascience/projects/nlp/llammlein/)!
 
14
 
15
  ### Usage
16
 
17
  ```python
18
  from transformers import AutoModelForCausalLM, AutoTokenizer
19
 
20
+ model = AutoModelForCausalLM.from_pretrained("LSX-UniWue/LLaMmlein_120M")
21
 
22
+ tokenizer = AutoTokenizer.from_pretrained("LSX-UniWue/LLaMmlein_120M")
23
  ```
24
 
25
 
26
  ### Performance
27
+ We evaluated our model on the [SuperGLEBer](https://lsx-uniwue.github.io/SuperGLEBer-site/) benchmark.