README.md
Browse files
README.md
CHANGED
@@ -6,3 +6,32 @@ language:
|
|
6 |
---
|
7 |
|
8 |
# German Tinyllama-120M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
|
8 |
# German Tinyllama-120M
|
9 |
+
|
10 |
+
This is a German Tinyllama 120M language model trained from scratch using the
|
11 |
+
the [Tinyllama](https://github.com/jzhang38/TinyLlama) codebase on the German portion of [RedPajama V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2).
|
12 |
+
|
13 |
+
|
14 |
+
### Usage
|
15 |
+
|
16 |
+
```python
|
17 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
18 |
+
|
19 |
+
model = AutoModelForCausalLM.from_pretrained("LSX-UniWue/german_tinyllama_120M")
|
20 |
+
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("LSX-UniWue/german_tinyllama_120M")
|
22 |
+
```
|
23 |
+
|
24 |
+
|
25 |
+
### Performance
|
26 |
+
We evaluated our results on the [SuperGLEBer](https://lsx-uniwue.github.io/SuperGLEBer-site/) benchmark.
|
27 |
+
|
28 |
+
| Task Type | Task Name | Metric | Score |
|
29 |
+
|---------------------|--------------|----------|-------|
|
30 |
+
| Classification | NLI | Accuracy | 0.629 |
|
31 |
+
| Classification | DB Aspect | micro F1 | 0.517 |
|
32 |
+
| Sequence Tagging | NER Europarl | micro F1 | 0.538 |
|
33 |
+
| Sentence Similarity | Pawsx | Pearson | 0.489 |
|
34 |
+
| Question Answering | MLQA | F1 | 0.846 |
|
35 |
+
|
36 |
+
|
37 |
+
|