Auto Upload
Browse files- README.md +81 -0
- config.json +26 -0
- lightning_logs/version_0/events.out.tfevents.1679160176.ki-jupyternotebook-8bdd +3 -0
- lightning_logs/version_0/hparams.yaml +1 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-4.0
|
| 3 |
+
pipeline_tag: question-answering
|
| 4 |
+
tags:
|
| 5 |
+
- question-answering
|
| 6 |
+
- transformers
|
| 7 |
+
- generated_from_trainer
|
| 8 |
+
datasets:
|
| 9 |
+
- squad_v2
|
| 10 |
+
- LLukas22/nq-simplified
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# all-MiniLM-L12-v2-qa-en
|
| 14 |
+
This model is an extractive qa model.
|
| 15 |
+
It's a fine-tuned version of [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) on the following datasets: [squad_v2](https://huggingface.co/datasets/squad_v2), [LLukas22/nq-simplified](https://huggingface.co/datasets/LLukas22/nq-simplified).
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
## Usage
|
| 20 |
+
|
| 21 |
+
You can use the model like this:
|
| 22 |
+
|
| 23 |
+
```python
|
| 24 |
+
from transformers import pipeline
|
| 25 |
+
|
| 26 |
+
#Make predictions
|
| 27 |
+
model_name = "LLukas22/all-MiniLM-L12-v2-qa-en"
|
| 28 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
| 29 |
+
|
| 30 |
+
QA_input = {
|
| 31 |
+
"question": "What's my name?",
|
| 32 |
+
"context": "My name is Clara and I live in Berkeley."
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
result = nlp(QA_input)
|
| 36 |
+
print(result)
|
| 37 |
+
```
|
| 38 |
+
Alternatively you can load the model and tokenizer on their own:
|
| 39 |
+
```python
|
| 40 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
| 41 |
+
|
| 42 |
+
#Make predictions
|
| 43 |
+
model_name = "LLukas22/all-MiniLM-L12-v2-qa-en"
|
| 44 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
| 45 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
## Training hyperparameters
|
| 49 |
+
The following hyperparameters were used during training:
|
| 50 |
+
|
| 51 |
+
- learning_rate: 2E-05
|
| 52 |
+
- per device batch size: 60
|
| 53 |
+
- effective batch size: 180
|
| 54 |
+
- seed: 42
|
| 55 |
+
- optimizer: AdamW with betas (0.9,0.999) and eps 1E-08
|
| 56 |
+
- weight decay: 1E-02
|
| 57 |
+
- D-Adaptation: False
|
| 58 |
+
- Warmup: False
|
| 59 |
+
- number of epochs: 10
|
| 60 |
+
- mixed_precision_training: bf16
|
| 61 |
+
|
| 62 |
+
## Training results
|
| 63 |
+
| Epoch | Train Loss | Validation Loss |
|
| 64 |
+
| ----- | ---------- | --------------- |
|
| 65 |
+
| 0 | 2.65 | 1.88 |
|
| 66 |
+
|
| 67 |
+
## Evaluation results
|
| 68 |
+
| Epoch | f1 | exact_match |
|
| 69 |
+
| ----- | ----- | ----- |
|
| 70 |
+
| 0 | 0.507 | 0.378 |
|
| 71 |
+
|
| 72 |
+
## Framework versions
|
| 73 |
+
- Transformers: 4.25.1
|
| 74 |
+
- PyTorch: 2.0.0+cu118
|
| 75 |
+
- PyTorch Lightning: 1.8.6
|
| 76 |
+
- Datasets: 2.7.1
|
| 77 |
+
- Tokenizers: 0.13.1
|
| 78 |
+
- Sentence Transformers: 2.2.2
|
| 79 |
+
|
| 80 |
+
## Additional Information
|
| 81 |
+
This model was trained as part of my Master's Thesis **'Evaluation of transformer based language models for use in service information systems'**. The source code is available on [Github](https://github.com/LLukas22/Master).
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L12-v2",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertForQuestionAnswering"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 384,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 1536,
|
| 14 |
+
"layer_norm_eps": 1e-12,
|
| 15 |
+
"max_position_embeddings": 512,
|
| 16 |
+
"model_type": "bert",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 12,
|
| 19 |
+
"pad_token_id": 0,
|
| 20 |
+
"position_embedding_type": "absolute",
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.25.1",
|
| 23 |
+
"type_vocab_size": 2,
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"vocab_size": 30522
|
| 26 |
+
}
|
lightning_logs/version_0/events.out.tfevents.1679160176.ki-jupyternotebook-8bdd
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:81d23d9dcb6c8bd8618714221bbda5463b8b98ff401439641ba47f8dd84a791c
|
| 3 |
+
size 4514
|
lightning_logs/version_0/hparams.yaml
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d7e3896965203f1ca5372a264efb4970f86ff7e4d3254c15136c5455c1652fd8
|
| 3 |
+
size 132923885
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"do_basic_tokenize": true,
|
| 4 |
+
"do_lower_case": true,
|
| 5 |
+
"mask_token": "[MASK]",
|
| 6 |
+
"model_max_length": 512,
|
| 7 |
+
"name_or_path": "sentence-transformers/all-MiniLM-L12-v2",
|
| 8 |
+
"never_split": null,
|
| 9 |
+
"pad_token": "[PAD]",
|
| 10 |
+
"sep_token": "[SEP]",
|
| 11 |
+
"special_tokens_map_file": "/home/jovyan/_huggingface-shared/hub/models--sentence-transformers--all-MiniLM-L12-v2/snapshots/9e16800aed25dbd1a96dfa6949c68c4d81d5dded/special_tokens_map.json",
|
| 12 |
+
"strip_accents": null,
|
| 13 |
+
"tokenize_chinese_chars": true,
|
| 14 |
+
"tokenizer_class": "BertTokenizer",
|
| 15 |
+
"unk_token": "[UNK]"
|
| 16 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|