LLCC506 commited on
Commit
48dbfda
·
verified ·
1 Parent(s): c218205

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -0
README.md ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ {}
5
+ ---
6
+
7
+ # InternVL-X-8B
8
+
9
+ ## How to Get Started with the Model
10
+
11
+ ```
12
+ import numpy as np
13
+ import time
14
+ import math
15
+ import torch
16
+ import torchvision.transforms as T
17
+ from decord import VideoReader, cpu
18
+ from PIL import Image
19
+ from torchvision.transforms.functional import InterpolationMode
20
+ from transformers import AutoModel, AutoTokenizer
21
+ import os
22
+
23
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
24
+ IMAGENET_STD = (0.229, 0.224, 0.225)
25
+
26
+
27
+ def build_transform(input_size):
28
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
29
+ transform = T.Compose([
30
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
31
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
32
+ T.ToTensor(),
33
+ T.Normalize(mean=MEAN, std=STD)
34
+ ])
35
+ return transform
36
+
37
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
38
+ best_ratio_diff = float('inf')
39
+ best_ratio = (1, 1)
40
+ area = width * height
41
+ for ratio in target_ratios:
42
+ target_aspect_ratio = ratio[0] / ratio[1]
43
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
44
+ if ratio_diff < best_ratio_diff:
45
+ best_ratio_diff = ratio_diff
46
+ best_ratio = ratio
47
+ elif ratio_diff == best_ratio_diff:
48
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
49
+ best_ratio = ratio
50
+ return best_ratio
51
+
52
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
53
+ orig_width, orig_height = image.size
54
+ aspect_ratio = orig_width / orig_height
55
+
56
+ block_h = math.ceil(orig_height / image_size)
57
+ block_w = math.ceil(orig_width / image_size)
58
+ max_num_new = block_h * block_w
59
+ if max_num_new > max_num:
60
+ max_num_new = max_num
61
+ max_num = max_num_new
62
+
63
+ # calculate the existing image aspect ratio
64
+ target_ratios = set(
65
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
66
+ i * j <= max_num and i * j >= min_num)
67
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
68
+
69
+ # find the closest aspect ratio to the target
70
+ target_aspect_ratio = find_closest_aspect_ratio(
71
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
72
+
73
+ # calculate the target width and height
74
+ target_width = image_size * target_aspect_ratio[0]
75
+ target_height = image_size * target_aspect_ratio[1]
76
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
77
+
78
+ # resize the image
79
+ resized_img = image.resize((target_width, target_height))
80
+ processed_images = []
81
+ for i in range(blocks):
82
+ box = (
83
+ (i % (target_width // image_size)) * image_size,
84
+ (i // (target_width // image_size)) * image_size,
85
+ ((i % (target_width // image_size)) + 1) * image_size,
86
+ ((i // (target_width // image_size)) + 1) * image_size
87
+ )
88
+ # split the image
89
+ split_img = resized_img.crop(box)
90
+ processed_images.append(split_img)
91
+ assert len(processed_images) == blocks
92
+ if use_thumbnail and len(processed_images) != 1:
93
+ thumbnail_img = image.resize((image_size, image_size))
94
+ processed_images.append(thumbnail_img)
95
+ return processed_images
96
+
97
+ def load_image(image_file, input_size=448, max_num=12):
98
+ image = Image.open(image_file).convert('RGB')
99
+ transform = build_transform(input_size=input_size)
100
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
101
+ pixel_values = [transform(image) for image in images]
102
+ pixel_values = torch.stack(pixel_values)
103
+ return pixel_values
104
+
105
+
106
+ path = 'InternVL-X-8B'
107
+ model = AutoModel.from_pretrained(
108
+ path,
109
+ torch_dtype=torch.bfloat16,
110
+ low_cpu_mem_usage=True,
111
+ use_flash_attention_2=False,
112
+ trust_remote_code=True).eval().cuda()
113
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
114
+ generation_config = dict(max_new_tokens=1024, do_sample=False)
115
+
116
+ pixel_values = load_image('examples/image1.jpg', max_num=1).to(torch.bfloat16).cuda()
117
+
118
+ # single-image single-round conversation (单图单轮对话)
119
+ question = '<image>\nDescribe this image in datail'
120
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
121
+ print(f'User: {question}\nAssistant: {response}')
122
+
123
+ # single-image multi-round conversation (单图多轮对话)
124
+ question = '<image>\nPlease describe the image in detail.'
125
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
126
+ print(f'User: {question}\nAssistant: {response}')
127
+
128
+ question = 'Please write a story according to the image.'
129
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
130
+ print(f'User: {question}\nAssistant: {response}')
131
+ ```