Commit
ยท
afd33b6
1
Parent(s):
5d40570
Update examples in Quickstart
Browse files
README.md
CHANGED
@@ -62,8 +62,27 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
62 |
)
|
63 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
messages = [
|
66 |
-
{"role": "user", "content":
|
67 |
]
|
68 |
input_ids = tokenizer.apply_chat_template(
|
69 |
messages,
|
|
|
62 |
)
|
63 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
64 |
|
65 |
+
# Choose your prompt:
|
66 |
+
# Math example (AIME 2024)
|
67 |
+
prompt = r"""Let $x,y$ and $z$ be positive real numbers that satisfy the following system of equations:
|
68 |
+
\[\log_2\left({x \over yz}\right) = {1 \over 2}\]\[\log_2\left({y \over xz}\right) = {1 \over 3}\]\[\log_2\left({z \over xy}\right) = {1 \over 4}\]
|
69 |
+
Then the value of $\left|\log_2(x^4y^3z^2)\right|$ is $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
|
70 |
+
|
71 |
+
Please reason step by step, and put your final answer within \boxed{}."""
|
72 |
+
# Korean MCQA example (CSAT Math 2025)
|
73 |
+
prompt = r"""Question : $a_1 = 2$์ธ ์์ด $\{a_n\}$๊ณผ $b_1 = 2$์ธ ๋ฑ์ฐจ์์ด $\{b_n\}$์ด ๋ชจ๋ ์์ฐ์ $n$์ ๋ํ์ฌ\[\sum_{k=1}^{n} \frac{a_k}{b_{k+1}} = \frac{1}{2} n^2\]์ ๋ง์กฑ์ํฌ ๋, $\sum_{k=1}^{5} a_k$์ ๊ฐ์ ๊ตฌํ์ฌ๋ผ.
|
74 |
+
|
75 |
+
Options :
|
76 |
+
A) 120
|
77 |
+
B) 125
|
78 |
+
C) 130
|
79 |
+
D) 135
|
80 |
+
E) 140
|
81 |
+
|
82 |
+
Please reason step by step, and you should write the correct option alphabet (A, B, C, D or E) within \\boxed{}."""
|
83 |
+
|
84 |
messages = [
|
85 |
+
{"role": "user", "content": prompt}
|
86 |
]
|
87 |
input_ids = tokenizer.apply_chat_template(
|
88 |
messages,
|