import argparse import h5py import matplotlib.pyplot as plt import numpy as np import os import time from solver import * ### For nRMSE evaluation def compute_nrmse(u_computed, u_reference): """Computes the Normalized Root Mean Squared Error (nRMSE) between the computed solution and reference. Args: u_computed (np.ndarray): Computed solution [batch_size, len(t_coordinate), N]. u_reference (np.ndarray): Reference solution [batch_size, len(t_coordinate), N]. Returns: nrmse (np.float32): The normalized RMSE value. """ rmse_values = np.sqrt(np.mean((u_computed - u_reference)**2, axis=(1,2))) u_true_norm = np.sqrt(np.mean(u_reference**2, axis=(1,2))) nrmse = np.mean(rmse_values / u_true_norm) return nrmse # For convergence test def convergence_test(a, u_pred, down_sample_rates=[6, 4, 3, 2], batch_size=8): """Use the test dataset for convergence test.""" print(f"##### Running convergence test for the solver #####") a_fine, u_fine = a[:batch_size], u_pred[:batch_size] down_sample_rates = sorted(down_sample_rates, reverse=True) errors = [] for rate in down_sample_rates: a_coarse = a_fine[:, ::rate, ::rate] u_coarse = solver(a_coarse) u_fine_proj = u_fine[:, ::rate, ::rate] error = np.mean( np.linalg.norm(u_coarse - u_fine_proj, axis=(1,2)) ) / np.sqrt(u_coarse.size) errors.append(error) rates = [] for i in range(len(errors)-1): rate = np.log(errors[i] / errors[i+1]) / np.log(down_sample_rates[i] / down_sample_rates[i+1]) resolution = int(((a.shape[1] - 1)/down_sample_rates[i]) + 1) print(f"Rate of convergence measured at spatio resolution {resolution} is {rate:.3f}") rates.append(rate) avg_rate = sum(rates) / len(rates) print(f"Average rate of convergence is {avg_rate:.3f}") return avg_rate def save_visualization(u_batch_np: np.array, u_ref_np: np.array, save_file_idx=0): """ Save the visualization of u_batch and u_ref in 2D (space vs time). """ difference_np = u_batch_np - u_ref_np fig, axs = plt.subplots(3, 1, figsize=(4, 12)) im1 = axs[0].imshow(u_batch_np, aspect='auto', extent=[0, 1, 1, 0], cmap='viridis') cbar1 = fig.colorbar(im1, ax=axs[0]) cbar1.set_label("Predicted values", fontsize=14) axs[0].set_title("Computed Solution", fontsize=16) im2 = axs[1].imshow(u_ref_np, aspect='auto', extent=[0, 1, 1, 0], cmap='viridis') cbar2 = fig.colorbar(im2, ax=axs[1]) cbar2.set_label("Reference values", fontsize=14) axs[1].set_title("Reference Solution", fontsize=16) im3 = axs[2].imshow(difference_np, aspect='auto', extent=[0, 1, 1, 0], cmap='coolwarm') cbar3 = fig.colorbar(im3, ax=axs[2]) cbar3.set_label("Prediction error", fontsize=14) axs[2].set_title("Prediction error", fontsize=16) plt.subplots_adjust(hspace=0.4) plt.savefig(os.path.join(args.save_pth, f'visualization_{save_file_idx}.png')) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Script for Solving 2D Darcy Equation.") parser.add_argument("--save-pth", type=str, default='.', help="The folder to save experimental results.") parser.add_argument("--run-id", type=str, default=0, help="The id of the current run.") parser.add_argument("--num-samples", type=int, default=100, help="The number of samples to test on.") parser.add_argument("--dataset-path-for-eval", type=str, default='/usr1/data/shandal/data/CodePDE/Darcy/piececonst_r421_N1024_smooth1_sample100.hdf5', help="The path to load the dataset.") args = parser.parse_args() with h5py.File(args.dataset_path_for_eval, 'r') as f: # Load the data u = np.array(f['sol'])[:args.num_samples] a = np.array(f['coeff'])[:args.num_samples] print(f"Loaded data with shape: {a.shape}") # Run solver print(f"##### Running the solver on the given dataset #####") start_time = time.time() u_pred = solver(a) end_time = time.time() nrmse = compute_nrmse(u_pred, u) avg_rate = convergence_test(a, u_pred) print(f"Result summary") print( f"nRMSE: {nrmse:.3e}\t| " f"Time: {end_time - start_time:.2f}s\t| " f"Average convergence rate: {avg_rate:.3f}\t|" ) # Visualization for the first sample save_visualization(u_pred[2], u[2], args.run_id)