Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,123 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
# GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images
|
5 |
+
|
6 |
+
<!-- <p align="left">
|
7 |
+
<img src="pics/fig1_v.png" width="90%">
|
8 |
+
</p> -->
|
9 |
+
|
10 |
+
## Introduction
|
11 |
+
|
12 |
+
GEM is a multimodal LLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation. GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process.
|
13 |
+
|
14 |
+
## π₯ Updates
|
15 |
+
|
16 |
+
#### Paper: π [Arxiv](https://arxiv.org/pdf/2503.06073)
|
17 |
+
|
18 |
+
#### Model: π€ [GEM](https://huggingface.co/LANSG/GEM)
|
19 |
+
|
20 |
+
#### Data: π€ [ECG-Grounding](https://huggingface.co/datasets/LANSG/ECG-Grounding)
|
21 |
+
|
22 |
+
|
23 |
+
## Setup
|
24 |
+
|
25 |
+
```shell
|
26 |
+
git clone https://github.com/lanxiang1017/GEM.git
|
27 |
+
bash GEM/setup.sh
|
28 |
+
```
|
29 |
+
|
30 |
+
## Data Preparation
|
31 |
+
|
32 |
+
Please download required data:
|
33 |
+
|
34 |
+
ECG:
|
35 |
+
- [MIMIC-IV](https://physionet.org/content/mimic-iv-ecg/1.0/)
|
36 |
+
- [PTB-XL](https://physionet.org/content/ptb-xl/1.0.3/)
|
37 |
+
- [Code-15%](https://zenodo.org/records/4916206)
|
38 |
+
- [CPSC 2018](https://physionet.org/content/challenge-2020/1.0.2/training/cpsc_2018/)
|
39 |
+
- [CSN](https://physionet.org/content/ecg-arrhythmia/1.0.0/)
|
40 |
+
- [G12E](https://physionet.org/content/challenge-2020/1.0.2/training/georgia/)
|
41 |
+
|
42 |
+
Images:
|
43 |
+
- [ECG-Grounding-Images](https://huggingface.co/datasets/LANSG/ECG-Grounding) (mimic_gen)
|
44 |
+
- [ECG-Bench](https://huggingface.co/datasets/PULSE-ECG/ECGBench)
|
45 |
+
|
46 |
+
After downloading all of them, organize the data as follows in `./data`,
|
47 |
+
|
48 |
+
```
|
49 |
+
βββ ecg_timeseries
|
50 |
+
βββ champan-shaoxing
|
51 |
+
βββ code15
|
52 |
+
βββ cpsc2018
|
53 |
+
βββ ptbxl
|
54 |
+
βββ georgia
|
55 |
+
βββ mimic-iv
|
56 |
+
βββ ecg_images
|
57 |
+
βββ cod15_v4
|
58 |
+
βββ csn_aug_all_layout_papersize
|
59 |
+
βββ csn_ori_layout_papersize
|
60 |
+
βββ csn_part_noise_layout_papersize
|
61 |
+
βββ gen_images
|
62 |
+
βββ mimic_gen
|
63 |
+
βββ mimic
|
64 |
+
βββ mimic_v4
|
65 |
+
βββ ptb-xl
|
66 |
+
βββ ecg_bench
|
67 |
+
βββ images
|
68 |
+
βββ jsons
|
69 |
+
βββ ecg_jsons
|
70 |
+
βββ ECG_Grounding_30k.json
|
71 |
+
βββ ECG_Grounding_130k.json
|
72 |
+
βββ ecg_grounding_test_data
|
73 |
+
βββ ecg-grounding-test.json
|
74 |
+
|
75 |
+
```
|
76 |
+
|
77 |
+
## Pretrained Model Preparation
|
78 |
+
|
79 |
+
Pretrained ECG Encoder:
|
80 |
+
- [ECG-CoCa](https://github.com/YubaoZhao/ECG-Chat) : place it in ```GEM/ecg_coca/open_clip/checkpoint```
|
81 |
+
|
82 |
+
Pretrained MLLMs:
|
83 |
+
- [PULSE](https://huggingface.co/PULSE-ECG/PULSE-7B)
|
84 |
+
- [LLaVA](https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b)
|
85 |
+
|
86 |
+
## Train
|
87 |
+
|
88 |
+
```bash GEM/scripts/train_gem.sh```
|
89 |
+
|
90 |
+
## Evaluation
|
91 |
+
|
92 |
+
For ECG-Grounding:
|
93 |
+
- step 1. generate interpretations: ```GEM/evaluation/gem_bench/bench_ecggrounding.sh```
|
94 |
+
- step 2. process interpretations: ```GEM/gem_evaluation/process_gem_outputs.ipynb```
|
95 |
+
- step 3. generate GPT evaluation reports: ```GEM/gem_evaluation/generate_gpt_eval.py```
|
96 |
+
- step 4. process evaluation reports and get scores: ```GEM/gem_evaluation/process_grounding_scores.ipynb```
|
97 |
+
|
98 |
+
For ECG-Bench:
|
99 |
+
- step 1. generate results: ```GEM/evaluation/gem_bench/bench_ecggrounding.sh```
|
100 |
+
- step 2. evaluate results: ```GEM/evaluation/evaluate_ecgbench.py```
|
101 |
+
- step 3. evaluate reports: ```GEM/evaluation/eval_report.py```
|
102 |
+
|
103 |
+
*Note: You'll need to specify result paths first in all evaluation scripts*
|
104 |
+
|
105 |
+
## Citation
|
106 |
+
|
107 |
+
If you find GEM helpful for your research and applications, please cite our paper:
|
108 |
+
|
109 |
+
```bibtex
|
110 |
+
@misc{lan2025gemempoweringmllmgrounded,
|
111 |
+
title={GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images},
|
112 |
+
author={Xiang Lan and Feng Wu and Kai He and Qinghao Zhao and Shenda Hong and Mengling Feng},
|
113 |
+
year={2025},
|
114 |
+
eprint={2503.06073},
|
115 |
+
archivePrefix={arXiv},
|
116 |
+
primaryClass={cs.CL},
|
117 |
+
url={https://arxiv.org/abs/2503.06073},
|
118 |
+
}
|
119 |
+
```
|
120 |
+
|
121 |
+
## Acknowledgement
|
122 |
+
We thank the authors of [PULSE](https://github.com/AIMedLab/PULSE/tree/dev) and [ECG-Chat](https://github.com/YubaoZhao/ECG-Chat) for their publicly released models, datasets, and training codes.
|
123 |
+
|