|
import torch |
|
import torch.nn as nn |
|
from torch.hub import load_state_dict_from_url |
|
from typing import Union, List, Dict, Any, cast |
|
|
|
|
|
__all__ = ['get_vgg'] |
|
|
|
|
|
model_urls = { |
|
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth', |
|
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth', |
|
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth', |
|
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', |
|
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth', |
|
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth', |
|
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth', |
|
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth', |
|
} |
|
|
|
|
|
class VGG(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
num_classes, |
|
out_keys, |
|
output_make_layers, |
|
init_weights: bool = True, |
|
**kwargs |
|
) -> None: |
|
super(VGG, self).__init__() |
|
self.stage_id = output_make_layers[0] |
|
self.features = output_make_layers[1] |
|
self.num_classes = num_classes |
|
self.out_keys = out_keys |
|
if num_classes is not None: |
|
self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) |
|
self.classifier = nn.Sequential( |
|
nn.Linear(512 * 7 * 7, 4096), |
|
nn.ReLU(True), |
|
nn.Dropout(), |
|
nn.Linear(4096, 4096), |
|
nn.ReLU(True), |
|
nn.Dropout(), |
|
nn.Linear(4096, num_classes), |
|
) |
|
if init_weights: |
|
self._initialize_weights() |
|
|
|
def forward(self, x: torch.Tensor): |
|
out_blocks = dict() |
|
stage = 0 |
|
out_blocks['block%d' % stage] = x |
|
|
|
for idx, op in enumerate(self.features): |
|
if idx in self.stage_id: |
|
stage += 1 |
|
x = op(x) |
|
out_blocks['block%d' % stage] = x |
|
continue |
|
x = op(x) |
|
|
|
if self.num_classes is not None: |
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
x = self.classifier(x) |
|
if self.out_keys is not None: |
|
out_blocks = {key: out_blocks[key] for key in self.out_keys} |
|
return x, out_blocks |
|
|
|
def _initialize_weights(self) -> None: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
def make_layers(in_channels, out_keys, cfg: List[Union[str, int]], batch_norm: bool = False): |
|
layer_list = [] |
|
|
|
idx = 0 |
|
stage_ids = [] |
|
for v in cfg: |
|
if isinstance(v, int) and v in [1, 2, 3, 4, 5]: |
|
if v > int(out_keys[-1].replace('block', '')): |
|
break |
|
continue |
|
if v == 'M': |
|
layer_list += [nn.MaxPool2d(kernel_size=2, stride=2)] |
|
stage_ids += [idx] |
|
idx += 1 |
|
else: |
|
v = cast(int, v) |
|
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) |
|
if batch_norm: |
|
layer_list += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] |
|
idx += 3 |
|
else: |
|
layer_list += [conv2d, nn.ReLU(inplace=True)] |
|
idx += 2 |
|
in_channels = v |
|
|
|
return stage_ids, nn.Sequential(*layer_list) |
|
|
|
|
|
cfgs: Dict[str, List[Union[str, int]]] = { |
|
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], |
|
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], |
|
'D': [1, 64, 64, 'M', 2, 128, 128, 'M', 3, 256, 256, 256, 'M', 4, 512, 512, 512, 'M', 5, 512, 512, 512, 'M'], |
|
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], |
|
} |
|
|
|
|
|
def _vgg(in_channels, num_classes, out_keys, arch: str, cfg: str, batch_norm: bool, pretrained: bool, progress: bool, **kwargs: Any) -> VGG: |
|
if pretrained: |
|
kwargs['init_weights'] = False |
|
stage_id, ops = make_layers(in_channels, out_keys, cfgs[cfg], batch_norm=batch_norm) |
|
model = VGG(num_classes, out_keys, (stage_id, ops), **kwargs) |
|
if pretrained: |
|
state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) |
|
if in_channels != 3: |
|
keys = state_dict.keys() |
|
keys = [x for x in keys if 'features.0.' in x] |
|
for key in keys: |
|
del state_dict[key] |
|
if num_classes != 1000: |
|
keys = state_dict.keys() |
|
keys = [x for x in keys if 'classifier' in x] |
|
for key in keys: |
|
del state_dict[key] |
|
if 'block5' not in out_keys: |
|
keys = list(state_dict.keys()) |
|
for key in keys: |
|
key_layer_id = int(key.split('.')[1]) |
|
if key_layer_id >= stage_id[-1]: |
|
del state_dict[key] |
|
model.load_state_dict(state_dict) |
|
return model |
|
|
|
|
|
def vgg11(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 11-layer model (configuration "A") from |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg11', 'A', False, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg11_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 11-layer model (configuration "A") with batch normalization |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg11_bn', 'A', True, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg13(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 13-layer model (configuration "B") |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg13', 'B', False, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg13_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 13-layer model (configuration "B") with batch normalization |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg13_bn', 'B', True, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg16(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 16-layer model (configuration "D") |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg16_bn(in_channels, num_classes, out_keys, pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 16-layer model (configuration "D") with batch normalization |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg(in_channels, num_classes, out_keys,'vgg16_bn', 'D', True, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg19(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 19-layer model (configuration "E") |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg19', 'E', False, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg19_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 19-layer model (configuration 'E') with batch normalization |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg19_bn', 'E', True, pretrained, progress, **kwargs) |
|
|
|
|
|
def get_vgg(name='vgg16_bn', pretrained=True, progress=True, num_classes=None, out_keys=None, in_channels=3, **kwargs): |
|
|
|
if pretrained and num_classes != 1000: |
|
print('warning: num_class is not equal to 1000, which will cause some parameters to fail to load!') |
|
if pretrained and in_channels != 3: |
|
print('warning: in_channels is not equal to 3, which will cause some parameters to fail to load!') |
|
|
|
if name == 'vgg16_bn': |
|
return vgg16_bn(in_channels=in_channels, num_classes=num_classes, |
|
out_keys=out_keys, pretrained=pretrained, progress=progress, **kwargs) |
|
|
|
elif name == 'resnet50': |
|
return _resnet50(name=name, pretrained=pretrained, progress=progress, |
|
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) |
|
elif name == 'resnet101': |
|
return _resnet101(name=name, pretrained=pretrained, progress=progress, |
|
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) |
|
elif name == 'resnet152': |
|
return _resnet152(name=name, pretrained=pretrained, progress=progress, |
|
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) |
|
else: |
|
raise NotImplementedError(r'''{0} is not an available values. \ |
|
Please choose one of the available values in |
|
[resnet18, reset50, resnet101, resnet152]'''.format(name)) |
|
|
|
|
|
if __name__ == '__main__': |
|
model = get_vgg('vgg16_bn', pretrained=True, num_classes=None, in_channels=4, out_keys=['block3']) |
|
x = torch.rand([2, 3, 512, 512]) |
|
x = model(x) |
|
torch.save(model.state_dict(), '../../vgg16bns4.pth') |
|
|