--- library_name: transformers language: - sq license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - Kushtrim/audioshqip metrics: - wer model-index: - name: Whisper Base Shqip results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Audio Shqip 97 orë type: Kushtrim/audioshqip args: 'config: sq, split: test' metrics: - type: wer value: 40.143396979133186 name: Wer --- # Whisper Base Shqip This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Audio Shqip 97 orë dataset. It achieves the following results on the evaluation set: - Loss: 0.5274 - Wer: 40.1434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 1.0357 | 0.3249 | 500 | 1.0437 | 70.9649 | | 0.7862 | 0.6498 | 1000 | 0.7759 | 57.9971 | | 0.6561 | 0.9747 | 1500 | 0.6805 | 51.6728 | | 0.5704 | 1.2995 | 2000 | 0.6337 | 49.0896 | | 0.5511 | 1.6244 | 2500 | 0.5968 | 47.4252 | | 0.522 | 1.9493 | 3000 | 0.5740 | 47.2168 | | 0.4252 | 2.2742 | 3500 | 0.5612 | 43.5865 | | 0.4411 | 2.5991 | 4000 | 0.5487 | 43.2817 | | 0.4434 | 2.9240 | 4500 | 0.5373 | 43.3737 | | 0.3791 | 3.2489 | 5000 | 0.5353 | 42.3143 | | 0.371 | 3.5737 | 5500 | 0.5297 | 41.3114 | | 0.4173 | 3.8986 | 6000 | 0.5231 | 41.4012 | | 0.3009 | 4.2235 | 6500 | 0.5276 | 40.9756 | | 0.3337 | 4.5484 | 7000 | 0.5249 | 40.4393 | | 0.3145 | 4.8733 | 7500 | 0.5222 | 40.2154 | | 0.2897 | 5.1982 | 8000 | 0.5264 | 40.4925 | | 0.2717 | 5.5231 | 8500 | 0.5256 | 40.6387 | | 0.2947 | 5.8480 | 9000 | 0.5251 | 40.2753 | | 0.2933 | 6.1728 | 9500 | 0.5268 | 40.5601 | | 0.2644 | 6.4977 | 10000 | 0.5274 | 40.1434 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3