--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - recall - f1 - precision model-index: - name: deit-base-patch16-224-finetuned-ind-4-imbalanced-aadhaarmask-3839 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9479166666666666 - name: Recall type: recall value: 0.9479166666666666 - name: F1 type: f1 value: 0.9464668525772705 - name: Precision type: precision value: 0.9472181024490807 --- # deit-base-patch16-224-finetuned-ind-4-imbalanced-aadhaarmask-3839 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1444 - Accuracy: 0.9479 - Recall: 0.9479 - F1: 0.9465 - Precision: 0.9472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.2268 | 1.0 | 96 | 0.2805 | 0.8919 | 0.8919 | 0.8753 | 0.8798 | | 0.2356 | 2.0 | 192 | 0.2842 | 0.9023 | 0.9023 | 0.8950 | 0.8967 | | 0.1597 | 3.0 | 288 | 0.2120 | 0.9219 | 0.9219 | 0.9116 | 0.9211 | | 0.1349 | 4.0 | 384 | 0.2449 | 0.9206 | 0.9206 | 0.9146 | 0.9193 | | 0.1647 | 5.0 | 480 | 0.2226 | 0.9167 | 0.9167 | 0.9129 | 0.9121 | | 0.1117 | 6.0 | 576 | 0.1599 | 0.9453 | 0.9453 | 0.9415 | 0.9434 | | 0.1232 | 7.0 | 672 | 0.1698 | 0.9492 | 0.9492 | 0.9477 | 0.9485 | | 0.1317 | 8.0 | 768 | 0.1624 | 0.9388 | 0.9388 | 0.9365 | 0.9368 | | 0.1018 | 9.0 | 864 | 0.1648 | 0.9388 | 0.9388 | 0.9360 | 0.9355 | | 0.0828 | 10.0 | 960 | 0.1597 | 0.9453 | 0.9453 | 0.9435 | 0.9454 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1