--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - recall - f1 - precision model-index: - name: deit-base-patch16-224-finetuned-ind-4-imbalanced-aadhaarmask-3839 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9401041666666666 - name: Recall type: recall value: 0.9401041666666666 - name: F1 type: f1 value: 0.9384896500283729 - name: Precision type: precision value: 0.9382242510101494 --- # deit-base-patch16-224-finetuned-ind-4-imbalanced-aadhaarmask-3839 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2241 - Accuracy: 0.9401 - Recall: 0.9401 - F1: 0.9385 - Precision: 0.9382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.1426 | 1.0 | 96 | 0.2195 | 0.9297 | 0.9297 | 0.9263 | 0.9270 | | 0.0644 | 2.0 | 192 | 0.2403 | 0.9245 | 0.9245 | 0.9249 | 0.9260 | | 0.0695 | 3.0 | 288 | 0.3488 | 0.9232 | 0.9232 | 0.9221 | 0.9257 | | 0.0674 | 4.0 | 384 | 0.2355 | 0.9375 | 0.9375 | 0.9366 | 0.9363 | | 0.1265 | 5.0 | 480 | 0.2119 | 0.9388 | 0.9388 | 0.9376 | 0.9382 | | 0.1128 | 6.0 | 576 | 0.2018 | 0.9401 | 0.9401 | 0.9388 | 0.9389 | | 0.0806 | 7.0 | 672 | 0.2095 | 0.9388 | 0.9388 | 0.9371 | 0.9410 | | 0.1237 | 8.0 | 768 | 0.2008 | 0.9427 | 0.9427 | 0.9423 | 0.9425 | | 0.0955 | 9.0 | 864 | 0.1763 | 0.9440 | 0.9440 | 0.9420 | 0.9421 | | 0.0429 | 10.0 | 960 | 0.2021 | 0.9401 | 0.9401 | 0.9381 | 0.9376 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1