--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - recall - f1 - precision model-index: - name: deit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-14687 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8458918688803746 - name: Recall type: recall value: 0.8458918688803746 - name: F1 type: f1 value: 0.843745130911636 - name: Precision type: precision value: 0.8521498018011563 --- # deit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-14687 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3635 - Accuracy: 0.8459 - Recall: 0.8459 - F1: 0.8437 - Precision: 0.8521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6153 | 0.9974 | 293 | 0.6607 | 0.7739 | 0.7739 | 0.7506 | 0.7444 | | 0.5075 | 1.9983 | 587 | 0.5850 | 0.7927 | 0.7927 | 0.7767 | 0.8081 | | 0.5278 | 2.9991 | 881 | 0.4721 | 0.8199 | 0.8199 | 0.8170 | 0.8301 | | 0.445 | 4.0 | 1175 | 0.4495 | 0.8186 | 0.8186 | 0.8136 | 0.8192 | | 0.3781 | 4.9974 | 1468 | 0.4018 | 0.8263 | 0.8263 | 0.8249 | 0.8326 | | 0.4025 | 5.9983 | 1762 | 0.4356 | 0.8221 | 0.8221 | 0.8195 | 0.8245 | | 0.3409 | 6.9991 | 2056 | 0.3876 | 0.8267 | 0.8267 | 0.8248 | 0.8330 | | 0.3181 | 8.0 | 2350 | 0.3849 | 0.8391 | 0.8391 | 0.8372 | 0.8436 | | 0.3042 | 8.9974 | 2643 | 0.3850 | 0.8280 | 0.8280 | 0.8285 | 0.8347 | | 0.2475 | 9.9983 | 2937 | 0.3624 | 0.8493 | 0.8493 | 0.8475 | 0.8571 | | 0.2339 | 10.9991 | 3231 | 0.3865 | 0.8318 | 0.8318 | 0.8281 | 0.8307 | | 0.2455 | 12.0 | 3525 | 0.3337 | 0.8387 | 0.8387 | 0.8371 | 0.8433 | | 0.2127 | 12.9974 | 3818 | 0.3685 | 0.8306 | 0.8306 | 0.8281 | 0.8356 | | 0.2288 | 13.9983 | 4112 | 0.3545 | 0.8370 | 0.8370 | 0.8352 | 0.8385 | | 0.2534 | 14.9991 | 4406 | 0.3587 | 0.8429 | 0.8429 | 0.8398 | 0.8537 | | 0.1911 | 16.0 | 4700 | 0.3573 | 0.8387 | 0.8387 | 0.8367 | 0.8396 | | 0.2118 | 16.9974 | 4993 | 0.3676 | 0.8370 | 0.8370 | 0.8356 | 0.8415 | | 0.22 | 17.9983 | 5287 | 0.3469 | 0.8357 | 0.8357 | 0.8326 | 0.8412 | | 0.1938 | 18.9991 | 5581 | 0.3512 | 0.8365 | 0.8365 | 0.8343 | 0.8363 | | 0.1816 | 19.9489 | 5860 | 0.3323 | 0.8463 | 0.8463 | 0.8449 | 0.8476 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0a0+81ea7a4 - Datasets 2.18.0 - Tokenizers 0.19.1