--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - recall - f1 - precision model-index: - name: deit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-11745 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8352490421455939 - name: Recall type: recall value: 0.8352490421455939 - name: F1 type: f1 value: 0.8308048120146843 - name: Precision type: precision value: 0.8376123328771266 --- # deit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-11745 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3657 - Accuracy: 0.8352 - Recall: 0.8352 - F1: 0.8308 - Precision: 0.8376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.5885 | 0.9974 | 293 | 0.5902 | 0.7910 | 0.7910 | 0.7773 | 0.7940 | | 0.4253 | 1.9983 | 587 | 0.4608 | 0.8174 | 0.8174 | 0.8128 | 0.8149 | | 0.4941 | 2.9991 | 881 | 0.4111 | 0.8335 | 0.8335 | 0.8309 | 0.8369 | | 0.4876 | 4.0 | 1175 | 0.4002 | 0.8378 | 0.8378 | 0.8349 | 0.8426 | | 0.3936 | 4.9974 | 1468 | 0.3882 | 0.8246 | 0.8246 | 0.8221 | 0.8361 | | 0.3928 | 5.9983 | 1762 | 0.3640 | 0.8421 | 0.8421 | 0.8404 | 0.8443 | | 0.3752 | 6.9991 | 2056 | 0.3553 | 0.8442 | 0.8442 | 0.8409 | 0.8469 | | 0.2994 | 8.0 | 2350 | 0.3540 | 0.8259 | 0.8259 | 0.8245 | 0.8271 | | 0.2614 | 8.9974 | 2643 | 0.3591 | 0.8378 | 0.8378 | 0.8360 | 0.8386 | | 0.2632 | 9.9745 | 2930 | 0.3483 | 0.8404 | 0.8404 | 0.8399 | 0.8419 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0a0+81ea7a4 - Datasets 2.18.0 - Tokenizers 0.19.1