Model save
Browse files- README.md +80 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: microsoft/deberta-v3-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: CS221-deberta-v3-base-finetuned-augmentation
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# CS221-deberta-v3-base-finetuned-augmentation
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.2285
|
23 |
+
- F1: 0.9258
|
24 |
+
- Roc Auc: 0.9451
|
25 |
+
- Accuracy: 0.8548
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 32
|
46 |
+
- eval_batch_size: 32
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 100
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
|
57 |
+
| 0.4444 | 1.0 | 180 | 0.4238 | 0.5147 | 0.6834 | 0.3621 |
|
58 |
+
| 0.3212 | 2.0 | 360 | 0.3233 | 0.7223 | 0.7933 | 0.5024 |
|
59 |
+
| 0.2397 | 3.0 | 540 | 0.2473 | 0.8341 | 0.8798 | 0.6442 |
|
60 |
+
| 0.1506 | 4.0 | 720 | 0.2095 | 0.8683 | 0.9076 | 0.7262 |
|
61 |
+
| 0.0987 | 5.0 | 900 | 0.2038 | 0.8838 | 0.9122 | 0.7498 |
|
62 |
+
| 0.0659 | 6.0 | 1080 | 0.1869 | 0.9068 | 0.9311 | 0.8151 |
|
63 |
+
| 0.0432 | 7.0 | 1260 | 0.2043 | 0.9027 | 0.9253 | 0.8096 |
|
64 |
+
| 0.029 | 8.0 | 1440 | 0.1907 | 0.9135 | 0.9337 | 0.8270 |
|
65 |
+
| 0.02 | 9.0 | 1620 | 0.1930 | 0.9240 | 0.9423 | 0.8520 |
|
66 |
+
| 0.0128 | 10.0 | 1800 | 0.2234 | 0.9180 | 0.9402 | 0.8381 |
|
67 |
+
| 0.0115 | 11.0 | 1980 | 0.2132 | 0.9185 | 0.9395 | 0.8409 |
|
68 |
+
| 0.01 | 12.0 | 2160 | 0.2166 | 0.9249 | 0.9440 | 0.8520 |
|
69 |
+
| 0.0055 | 13.0 | 2340 | 0.2182 | 0.9267 | 0.9438 | 0.8568 |
|
70 |
+
| 0.0057 | 14.0 | 2520 | 0.2263 | 0.9245 | 0.9445 | 0.8562 |
|
71 |
+
| 0.0041 | 15.0 | 2700 | 0.2246 | 0.9254 | 0.9464 | 0.8555 |
|
72 |
+
| 0.0043 | 16.0 | 2880 | 0.2285 | 0.9258 | 0.9451 | 0.8548 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.47.0
|
78 |
+
- Pytorch 2.5.1+cu121
|
79 |
+
- Datasets 3.2.0
|
80 |
+
- Tokenizers 0.21.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 737728508
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b06eaa00306392e43619c8585aa4080014e9fe6466376c34e2ed4e8503b1fd4f
|
3 |
size 737728508
|