--- library_name: transformers license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: CS221-deberta-base-finetuned-semeval-NT results: [] --- # CS221-deberta-base-finetuned-semeval-NT This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5533 - F1: 0.7588 - Roc Auc: 0.8183 - Accuracy: 0.4693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4331 | 1.0 | 277 | 0.3934 | 0.7185 | 0.7878 | 0.3845 | | 0.3183 | 2.0 | 554 | 0.3692 | 0.7383 | 0.8014 | 0.4458 | | 0.1905 | 3.0 | 831 | 0.4011 | 0.7447 | 0.8045 | 0.4819 | | 0.1716 | 4.0 | 1108 | 0.4457 | 0.7489 | 0.8106 | 0.4531 | | 0.0954 | 5.0 | 1385 | 0.4980 | 0.7573 | 0.8190 | 0.4567 | | 0.075 | 6.0 | 1662 | 0.5533 | 0.7588 | 0.8183 | 0.4693 | | 0.0442 | 7.0 | 1939 | 0.6536 | 0.7360 | 0.7985 | 0.4531 | | 0.0075 | 8.0 | 2216 | 0.6831 | 0.7539 | 0.8135 | 0.4675 | | 0.0111 | 9.0 | 2493 | 0.7289 | 0.7529 | 0.8124 | 0.4693 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0