Kronu commited on
Commit
0329adf
·
verified ·
1 Parent(s): d6d3462

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - finance
5
+ - trading
6
+ - futures
7
+ - nq
8
+ - machine-learning
9
+ - lightgbm
10
+ - classification
11
+ - market-microstructure
12
+ - key-levels
13
+ license: mit
14
+ ---
15
+
16
+ # NQ Futures Key Level Classifier
17
+
18
+ LightGBM classifier for predicting NQ futures key level reactions based on market microstructure
19
+
20
+ ## Model Details
21
+
22
+ - **Model Type**: LightGBM Classifier
23
+ - **Task**: Multi-class classification for NQ futures key level reactions
24
+ - **Training Data**: 1,043,089 episodes from 78 trading days (April-August 2025)
25
+ - **Features**: 0 market microstructure and session context features
26
+
27
+ ## Performance
28
+
29
+ - **Multi-class Log Loss**: 0.9852353681288883
30
+ - **Accuracy**: 0.9764018445196484
31
+
32
+ ## Feature Importance (Top 10)
33
+
34
+ - mae_ticks_60s: 6659.0000
35
+ - rv_60s: 6409.0000
36
+ - mfe_ticks_60s: 6190.0000
37
+ - touch_count_last_30m: 5442.0000
38
+ - vwap_dev_ticks: 5023.0000
39
+ - mfe_ticks_120s: 4985.0000
40
+ - session_cum_delta: 4864.0000
41
+ - mae_ticks_120s: 4795.0000
42
+ - pullback_ticks_30s: 4774.0000
43
+ - p50_intertrade_ms_5s: 4770.0000
44
+
45
+
46
+ ## Usage
47
+
48
+ ```python
49
+ import joblib
50
+ import pandas as pd
51
+
52
+ # Load the model
53
+ model = joblib.load('classifier.joblib')
54
+
55
+ # Prepare features (same format as training)
56
+ features = prepare_features(your_data)
57
+
58
+ # Make predictions
59
+ predictions = model.predict(features)
60
+ probabilities = model.predict_proba(features)
61
+ ```
62
+
63
+ ## Model Architecture
64
+
65
+ This model predicts four possible outcomes when price approaches key levels:
66
+ - **BREAK**: Price breaks through the level decisively
67
+ - **BOUNCE**: Price bounces off the level
68
+ - **WEAK_BREAK**: Price breaks but with weak momentum
69
+ - **TIMEOUT**: Price approaches but doesn't reach outcome within time limit
70
+
71
+ ## Training Context
72
+
73
+ The model was trained on NQ futures data from the first 2 hours of regular trading hours (09:30-11:30 ET), focusing on:
74
+ - Key level identification (OPEN, IBH/IBL, Round Numbers, Session VWAP)
75
+ - Market microstructure features (order flow, volatility, timing)
76
+ - Session context (cumulative delta, VWAP deviation, touch frequency)
77
+
78
+ ## License
79
+
80
+ MIT License - see LICENSE file for details.