Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 258.03 +/- 22.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79538d510ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79538d510f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79538d511000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79538d511090>", "_build": "<function ActorCriticPolicy._build at 0x79538d511120>", "forward": "<function ActorCriticPolicy.forward at 0x79538d5111b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79538d511240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79538d5112d0>", "_predict": "<function ActorCriticPolicy._predict at 0x79538d511360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79538d5113f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79538d511480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79538d511510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79538d4a8ac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714399341938832388, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKgSi77VZVU/tyxLvp5YoL7FCGq+vU57PQAAAAAAAAAAwGqTPUh9wz65ZSy+IbptvgelOb27lWy8AAAAAAAAAADznJA9H8hAPiBvYL5Sffm954MrvehscL0AAAAAAAAAAF2cpz5BaHQ/TenDPtRyxL6z0/8+Q35LPQAAAAAAAAAAs9Nxve2gRD5eYqK7m5ArvixBgr2GT+S7AAAAAAAAAACAA+M950pWP8Rgib1zwM6+mlLDPebqrL0AAAAAAAAAAE3PSL6QrOU+ztWhvLqmfr418aa9YoTHPQAAAAAAAAAAZuI1vmgGlz//HRa/fCzcvtpChL4CSn2+AAAAAAAAAAANyhC+TyZ5P55Bh75kWby+jQg5vk+LHL0AAAAAAAAAALNpQ71SRfK7cR66PNaYFbvz5VC967qcuwAAgD8AAIA/M68lPoBpgD+4Wgs9EhacvpuKID6KaEK9AAAAAAAAAACALCO9nYrZPlZdHT1KE2S+IehRvFIUBb0AAAAAAAAAAJpIgzyIwJA9ZzUEPd3EXr4JY688Ma4IvQAAAAAAAAAAWu6bvTGZcz6k54s9NYt/vhTJj71r54U8AAAAAAAAAACzZAS9dEeEvBaTgjvulwq+5TCIPRq1oT4AAIA/AACAP2Y3V732XDq69ebWPETN9jhZ4WO76EPvNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEK7DpC8e0aMAWyUS/+MAXSUR0CXyWVQhwERdX2UKGgGR0Bv/D7CSA6NaAdNYQFoCEdAl8nR1cMVlHV9lChoBkdARLnnfVI7NmgHS9FoCEdAl8o+0kWyknV9lChoBkdAbd3sVLzwt2gHTSYBaAhHQJfKYkt29td1fZQoaAZHQHGMpQ53kghoB01TAWgIR0CXyqm1pj+adX2UKGgGR0BwvnCSA6MjaAdNGQFoCEdAl8tRKpT/AHV9lChoBkdAci4TuOS4fGgHTTcBaAhHQJfLoBnzxw11fZQoaAZHQHIfF+y7f51oB004AWgIR0CXy92nsLOSdX2UKGgGR0BzFmLCN0eVaAdNJwFoCEdAl8ylyBClanV9lChoBkdAcebmdiDujWgHTTcBaAhHQJfNOkCV8kV1fZQoaAZHQG58h11W8yxoB002AWgIR0CXziu0TlDGdX2UKGgGR0ByYhQyhzvJaAdNRAFoCEdAl85vdVNpNHV9lChoBkdAcKiryDqW1WgHTRABaAhHQJfQAMI/qxF1fZQoaAZHQHGA20qpcX5oB01WAWgIR0CX0jNcW0qpdX2UKGgGR0BwX6t3fQ8faAdNHAFoCEdAl9JvyGzrvHV9lChoBkdAckb0jTrmhmgHTS4BaAhHQJfSfvw3HaN1fZQoaAZHQHKhB4hUzbhoB01rAWgIR0CX0sEC/47BdX2UKGgGR0BsqIEpy6tlaAdNGgFoCEdAl9LUXgtOEnV9lChoBkdAcOSVsk6cRWgHTRkBaAhHQJfTL36AOKB1fZQoaAZHQGwcIexOclRoB00jAWgIR0CX05xe9i+ddX2UKGgGR0BzUSFAVwglaAdNFwFoCEdAl9QwlruYyHV9lChoBkdAbcIBUaQ3gmgHTTABaAhHQJfUSGGmDUV1fZQoaAZHQHD1rngYP5JoB00MAWgIR0CX1HGRmseXdX2UKGgGR0BxEIUM5OrRaAdNQAFoCEdAl9WyIDYAbXV9lChoBkdAcIkvsqril2gHTUEBaAhHQJfW5Ig/1QJ1fZQoaAZHQHFZR+KCQLhoB00iAWgIR0CX14U3GXHBdX2UKGgGR0BxpJVmz0HyaAdNGwFoCEdAl9eWza9K3HV9lChoBkdAbSM3OObRW2gHTVIBaAhHQJfX9+rlvIh1fZQoaAZHQHHfCaEzwc5oB00DAWgIR0CX2l2jO9nLdX2UKGgGR0Bvh95D7ZWaaAdNDwFoCEdAl9sjImw7knV9lChoBkdAcrc29tdiUmgHTVoBaAhHQJfbLELpiZx1fZQoaAZHQHErXSWqtHRoB00wAWgIR0CX280HhS9/dX2UKGgGR0BvjmDOC5EuaAdNQgFoCEdAl9ytZA6dUnV9lChoBkdAca5X/HYHxGgHTSkBaAhHQJfc96AvtdB1fZQoaAZHQHKmlIAfdRBoB00YAWgIR0CX3Px95QgtdX2UKGgGR0Bv41CZ4Oc2aAdNRQFoCEdAl90TMeOn23V9lChoBkdAbxg5o4+8oWgHTToBaAhHQJfdFNEgGKR1fZQoaAZHQHJ2YCMglnhoB00+AWgIR0CX3lKkEcKgdX2UKGgGR0Bu91Frl/6PaAdNUwFoCEdAl97A5R0lq3V9lChoBkdAcZzJqZc9n2gHTT8BaAhHQJffjg4wRGt1fZQoaAZHQHAFgO8TSLJoB00/AWgIR0CX4MjUd7v5dX2UKGgGR0Bt/w2XLNfPaAdNIAFoCEdAl+D2cz67/XV9lChoBkdAb9ZowmE5AGgHTTEBaAhHQJfhAN6PbPB1fZQoaAZHQE8yvhZQpF1oB0vTaAhHQJfhmOdXko51fZQoaAZHQEwHQF9roGJoB0vsaAhHQJfkelDWsil1fZQoaAZHQHGZ8ijcmBxoB00UAWgIR0CX5JUt7KJVdX2UKGgGR0BvnnYe1a4daAdNPAFoCEdAl+SfmcOLBXV9lChoBkdAbVxaGpMpPWgHTTgBaAhHQJf5KC6H0sh1fZQoaAZHQG9ubzK9wm5oB00kAWgIR0CX+lrGR3eOdX2UKGgGR0ByUegUUO/daAdNLQFoCEdAl/qRePaL43V9lChoBkdAcb5RSxZ+yGgHTTkBaAhHQJf6rpr1uix1fZQoaAZHQHCQiTEBKcxoB01HAWgIR0CX+2CbtqpMdX2UKGgGR0Bu+4ZXMhX9aAdNKwFoCEdAl/yHNgSey3V9lChoBkdAcKVmHxjJ+2gHTVEBaAhHQJf9Wndfsu51fZQoaAZHQHDK18PWhAZoB000AWgIR0CX/dMgEEDAdX2UKGgGR0Bx41/mT1TSaAdNJwFoCEdAl/7m2gFotnV9lChoBkdAcikGkvboKWgHTVwCaAhHQJf/KKjzqbB1fZQoaAZHQG/Fdwm3OOdoB008AWgIR0CX/6aLGaQWdX2UKGgGR0Bv3fmDDjzaaAdNUwFoCEdAmAAzDbah6HV9lChoBkdAcqWbAk9lmWgHTV8BaAhHQJgBdrYXfqJ1fZQoaAZHQG7G4L1EmY1oB00aAWgIR0CYAgO2iL2pdX2UKGgGR0BR4rO3UhFFaAdL6mgIR0CYAlV+qioLdX2UKGgGR0BtDAeT3Zf2aAdNLgFoCEdAmAKid4FA3XV9lChoBkdAcxcIdU83dmgHTTMBaAhHQJgCsfDDTBt1fZQoaAZHQHNYeGoJiRZoB0v9aAhHQJgCwEeQuEp1fZQoaAZHQHFQqC6H0shoB00yAWgIR0CYAzRmbsnidX2UKGgGR0BrNIzguRLcaAdNGwFoCEdAmAO80k4WDnV9lChoBkdAcjvSeAd4mmgHTSIBaAhHQJgEiTcIqsl1fZQoaAZHQHAWoMfA9FFoB01SAWgIR0CYBxv7m+0xdX2UKGgGR0Bw/wSZjQRgaAdNPgFoCEdAmAc3LaEi+3V9lChoBkdAchY6OHWSU2gHTU0BaAhHQJgIRgH/tIF1fZQoaAZHQHBiZfD1oQFoB01EAWgIR0CYCfN4JNTMdX2UKGgGR0BxNsG0NSZSaAdNdQFoCEdAmAsMLa24NXV9lChoBkdAcG4mEXcgyWgHTScBaAhHQJgLDQLNOdp1fZQoaAZHQHIZZng5zYFoB00OAWgIR0CYCxjxkNF0dX2UKGgGR0Bw+6n752yLaAdNbgFoCEdAmAsVKXfIjnV9lChoBkdAcMKIZqEeyWgHTVEBaAhHQJgLKPFNtZV1fZQoaAZHQG8JJ4jbBXVoB00MAWgIR0CYC2R3/xUedX2UKGgGR0BtwFsvZh8ZaAdNGwFoCEdAmAvGcBltj3V9lChoBkdAcQASpBHCoGgHTQUBaAhHQJgNX7cfvF51fZQoaAZHQG99zZQHiWFoB01WAWgIR0CYDb1oQFs6dX2UKGgGR0BwYl71Iy0saAdNRwFoCEdAmA3RmGucMHV9lChoBkdAcDYUWl/H52gHTYIBaAhHQJgOV/2Cdz51fZQoaAZHQG3G5RCQcPxoB014AWgIR0CYD9+JgsshdX2UKGgGR0BuAlM23rleaAdNNQFoCEdAmBFlcY64lXV9lChoBkdAcRDx+8XenGgHTSABaAhHQJgRzgVGkN51fZQoaAZHQHEuVcdHUc5oB01IAWgIR0CYEilE7W/bdX2UKGgGR0BQwrJbMX7+aAdL2mgIR0CYEjvs7dSEdX2UKGgGR0ByBc4vN/vwaAdNEQFoCEdAmBO+OwPiDXV9lChoBkdAbRDGvwEyL2gHTRkBaAhHQJgUCTB68g91fZQoaAZHQG8an8TBZZBoB004AWgIR0CYFCsyi22HdX2UKGgGR0Bw1tvjwQUYaAdNHwFoCEdAmBRR9kSVW3V9lChoBkdAcE1fCQ9zO2gHTT0BaAhHQJgVR6Tnq3V1fZQoaAZHQHGSJVOsT39oB00nAWgIR0CYFVYgJTl1dX2UKGgGR0BvSkF8ohIOaAdNaAFoCEdAmBcRC2MKkXV9lChoBkdAcAEjZL7GemgHTTMBaAhHQJgX+pm29ct1fZQoaAZHQHMF/pt78eloB00mAWgIR0CYGMMDOkckdX2UKGgGR0Bxnh8hLXcyaAdNRgFoCEdAmBkr5hz/63V9lChoBkdAczM9MsYl6mgHTQQBaAhHQJgZe/RE4Nt1fZQoaAZHQHJjNFjNILBoB01bAWgIR0CYGhCfYjB3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQ+e2V3hXzq6P0qV9ECwObcYwDaW5jlIoQc+bixqREhbiMXpnt873mJXWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylIoF3UCkrAB1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04440f2ec09634693440846dae560e29ce1a54cc2bca3daa7af1ddd71ec64c5f
|
3 |
+
size 148358
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x79538d510ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79538d510f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79538d511000>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79538d511090>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x79538d511120>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x79538d5111b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x79538d511240>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79538d5112d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x79538d511360>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79538d5113f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79538d511480>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x79538d511510>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x79538d4a8ac0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1714399341938832388,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKgSi77VZVU/tyxLvp5YoL7FCGq+vU57PQAAAAAAAAAAwGqTPUh9wz65ZSy+IbptvgelOb27lWy8AAAAAAAAAADznJA9H8hAPiBvYL5Sffm954MrvehscL0AAAAAAAAAAF2cpz5BaHQ/TenDPtRyxL6z0/8+Q35LPQAAAAAAAAAAs9Nxve2gRD5eYqK7m5ArvixBgr2GT+S7AAAAAAAAAACAA+M950pWP8Rgib1zwM6+mlLDPebqrL0AAAAAAAAAAE3PSL6QrOU+ztWhvLqmfr418aa9YoTHPQAAAAAAAAAAZuI1vmgGlz//HRa/fCzcvtpChL4CSn2+AAAAAAAAAAANyhC+TyZ5P55Bh75kWby+jQg5vk+LHL0AAAAAAAAAALNpQ71SRfK7cR66PNaYFbvz5VC967qcuwAAgD8AAIA/M68lPoBpgD+4Wgs9EhacvpuKID6KaEK9AAAAAAAAAACALCO9nYrZPlZdHT1KE2S+IehRvFIUBb0AAAAAAAAAAJpIgzyIwJA9ZzUEPd3EXr4JY688Ma4IvQAAAAAAAAAAWu6bvTGZcz6k54s9NYt/vhTJj71r54U8AAAAAAAAAACzZAS9dEeEvBaTgjvulwq+5TCIPRq1oT4AAIA/AACAP2Y3V732XDq69ebWPETN9jhZ4WO76EPvNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEK7DpC8e0aMAWyUS/+MAXSUR0CXyWVQhwERdX2UKGgGR0Bv/D7CSA6NaAdNYQFoCEdAl8nR1cMVlHV9lChoBkdARLnnfVI7NmgHS9FoCEdAl8o+0kWyknV9lChoBkdAbd3sVLzwt2gHTSYBaAhHQJfKYkt29td1fZQoaAZHQHGMpQ53kghoB01TAWgIR0CXyqm1pj+adX2UKGgGR0BwvnCSA6MjaAdNGQFoCEdAl8tRKpT/AHV9lChoBkdAci4TuOS4fGgHTTcBaAhHQJfLoBnzxw11fZQoaAZHQHIfF+y7f51oB004AWgIR0CXy92nsLOSdX2UKGgGR0BzFmLCN0eVaAdNJwFoCEdAl8ylyBClanV9lChoBkdAcebmdiDujWgHTTcBaAhHQJfNOkCV8kV1fZQoaAZHQG58h11W8yxoB002AWgIR0CXziu0TlDGdX2UKGgGR0ByYhQyhzvJaAdNRAFoCEdAl85vdVNpNHV9lChoBkdAcKiryDqW1WgHTRABaAhHQJfQAMI/qxF1fZQoaAZHQHGA20qpcX5oB01WAWgIR0CX0jNcW0qpdX2UKGgGR0BwX6t3fQ8faAdNHAFoCEdAl9JvyGzrvHV9lChoBkdAckb0jTrmhmgHTS4BaAhHQJfSfvw3HaN1fZQoaAZHQHKhB4hUzbhoB01rAWgIR0CX0sEC/47BdX2UKGgGR0BsqIEpy6tlaAdNGgFoCEdAl9LUXgtOEnV9lChoBkdAcOSVsk6cRWgHTRkBaAhHQJfTL36AOKB1fZQoaAZHQGwcIexOclRoB00jAWgIR0CX05xe9i+ddX2UKGgGR0BzUSFAVwglaAdNFwFoCEdAl9QwlruYyHV9lChoBkdAbcIBUaQ3gmgHTTABaAhHQJfUSGGmDUV1fZQoaAZHQHD1rngYP5JoB00MAWgIR0CX1HGRmseXdX2UKGgGR0BxEIUM5OrRaAdNQAFoCEdAl9WyIDYAbXV9lChoBkdAcIkvsqril2gHTUEBaAhHQJfW5Ig/1QJ1fZQoaAZHQHFZR+KCQLhoB00iAWgIR0CX14U3GXHBdX2UKGgGR0BxpJVmz0HyaAdNGwFoCEdAl9eWza9K3HV9lChoBkdAbSM3OObRW2gHTVIBaAhHQJfX9+rlvIh1fZQoaAZHQHHfCaEzwc5oB00DAWgIR0CX2l2jO9nLdX2UKGgGR0Bvh95D7ZWaaAdNDwFoCEdAl9sjImw7knV9lChoBkdAcrc29tdiUmgHTVoBaAhHQJfbLELpiZx1fZQoaAZHQHErXSWqtHRoB00wAWgIR0CX280HhS9/dX2UKGgGR0BvjmDOC5EuaAdNQgFoCEdAl9ytZA6dUnV9lChoBkdAca5X/HYHxGgHTSkBaAhHQJfc96AvtdB1fZQoaAZHQHKmlIAfdRBoB00YAWgIR0CX3Px95QgtdX2UKGgGR0Bv41CZ4Oc2aAdNRQFoCEdAl90TMeOn23V9lChoBkdAbxg5o4+8oWgHTToBaAhHQJfdFNEgGKR1fZQoaAZHQHJ2YCMglnhoB00+AWgIR0CX3lKkEcKgdX2UKGgGR0Bu91Frl/6PaAdNUwFoCEdAl97A5R0lq3V9lChoBkdAcZzJqZc9n2gHTT8BaAhHQJffjg4wRGt1fZQoaAZHQHAFgO8TSLJoB00/AWgIR0CX4MjUd7v5dX2UKGgGR0Bt/w2XLNfPaAdNIAFoCEdAl+D2cz67/XV9lChoBkdAb9ZowmE5AGgHTTEBaAhHQJfhAN6PbPB1fZQoaAZHQE8yvhZQpF1oB0vTaAhHQJfhmOdXko51fZQoaAZHQEwHQF9roGJoB0vsaAhHQJfkelDWsil1fZQoaAZHQHGZ8ijcmBxoB00UAWgIR0CX5JUt7KJVdX2UKGgGR0BvnnYe1a4daAdNPAFoCEdAl+SfmcOLBXV9lChoBkdAbVxaGpMpPWgHTTgBaAhHQJf5KC6H0sh1fZQoaAZHQG9ubzK9wm5oB00kAWgIR0CX+lrGR3eOdX2UKGgGR0ByUegUUO/daAdNLQFoCEdAl/qRePaL43V9lChoBkdAcb5RSxZ+yGgHTTkBaAhHQJf6rpr1uix1fZQoaAZHQHCQiTEBKcxoB01HAWgIR0CX+2CbtqpMdX2UKGgGR0Bu+4ZXMhX9aAdNKwFoCEdAl/yHNgSey3V9lChoBkdAcKVmHxjJ+2gHTVEBaAhHQJf9Wndfsu51fZQoaAZHQHDK18PWhAZoB000AWgIR0CX/dMgEEDAdX2UKGgGR0Bx41/mT1TSaAdNJwFoCEdAl/7m2gFotnV9lChoBkdAcikGkvboKWgHTVwCaAhHQJf/KKjzqbB1fZQoaAZHQG/Fdwm3OOdoB008AWgIR0CX/6aLGaQWdX2UKGgGR0Bv3fmDDjzaaAdNUwFoCEdAmAAzDbah6HV9lChoBkdAcqWbAk9lmWgHTV8BaAhHQJgBdrYXfqJ1fZQoaAZHQG7G4L1EmY1oB00aAWgIR0CYAgO2iL2pdX2UKGgGR0BR4rO3UhFFaAdL6mgIR0CYAlV+qioLdX2UKGgGR0BtDAeT3Zf2aAdNLgFoCEdAmAKid4FA3XV9lChoBkdAcxcIdU83dmgHTTMBaAhHQJgCsfDDTBt1fZQoaAZHQHNYeGoJiRZoB0v9aAhHQJgCwEeQuEp1fZQoaAZHQHFQqC6H0shoB00yAWgIR0CYAzRmbsnidX2UKGgGR0BrNIzguRLcaAdNGwFoCEdAmAO80k4WDnV9lChoBkdAcjvSeAd4mmgHTSIBaAhHQJgEiTcIqsl1fZQoaAZHQHAWoMfA9FFoB01SAWgIR0CYBxv7m+0xdX2UKGgGR0Bw/wSZjQRgaAdNPgFoCEdAmAc3LaEi+3V9lChoBkdAchY6OHWSU2gHTU0BaAhHQJgIRgH/tIF1fZQoaAZHQHBiZfD1oQFoB01EAWgIR0CYCfN4JNTMdX2UKGgGR0BxNsG0NSZSaAdNdQFoCEdAmAsMLa24NXV9lChoBkdAcG4mEXcgyWgHTScBaAhHQJgLDQLNOdp1fZQoaAZHQHIZZng5zYFoB00OAWgIR0CYCxjxkNF0dX2UKGgGR0Bw+6n752yLaAdNbgFoCEdAmAsVKXfIjnV9lChoBkdAcMKIZqEeyWgHTVEBaAhHQJgLKPFNtZV1fZQoaAZHQG8JJ4jbBXVoB00MAWgIR0CYC2R3/xUedX2UKGgGR0BtwFsvZh8ZaAdNGwFoCEdAmAvGcBltj3V9lChoBkdAcQASpBHCoGgHTQUBaAhHQJgNX7cfvF51fZQoaAZHQG99zZQHiWFoB01WAWgIR0CYDb1oQFs6dX2UKGgGR0BwYl71Iy0saAdNRwFoCEdAmA3RmGucMHV9lChoBkdAcDYUWl/H52gHTYIBaAhHQJgOV/2Cdz51fZQoaAZHQG3G5RCQcPxoB014AWgIR0CYD9+JgsshdX2UKGgGR0BuAlM23rleaAdNNQFoCEdAmBFlcY64lXV9lChoBkdAcRDx+8XenGgHTSABaAhHQJgRzgVGkN51fZQoaAZHQHEuVcdHUc5oB01IAWgIR0CYEilE7W/bdX2UKGgGR0BQwrJbMX7+aAdL2mgIR0CYEjvs7dSEdX2UKGgGR0ByBc4vN/vwaAdNEQFoCEdAmBO+OwPiDXV9lChoBkdAbRDGvwEyL2gHTRkBaAhHQJgUCTB68g91fZQoaAZHQG8an8TBZZBoB004AWgIR0CYFCsyi22HdX2UKGgGR0Bw1tvjwQUYaAdNHwFoCEdAmBRR9kSVW3V9lChoBkdAcE1fCQ9zO2gHTT0BaAhHQJgVR6Tnq3V1fZQoaAZHQHGSJVOsT39oB00nAWgIR0CYFVYgJTl1dX2UKGgGR0BvSkF8ohIOaAdNaAFoCEdAmBcRC2MKkXV9lChoBkdAcAEjZL7GemgHTTMBaAhHQJgX+pm29ct1fZQoaAZHQHMF/pt78eloB00mAWgIR0CYGMMDOkckdX2UKGgGR0Bxnh8hLXcyaAdNRgFoCEdAmBkr5hz/63V9lChoBkdAczM9MsYl6mgHTQQBaAhHQJgZe/RE4Nt1fZQoaAZHQHJjNFjNILBoB01bAWgIR0CYGhCfYjB3dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQ+e2V3hXzq6P0qV9ECwObcYwDaW5jlIoQc+bixqREhbiMXpnt873mJXWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylIoF3UCkrAB1YnViLg==",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:489b107d7e2cf3d7ae05e699fb84ba56129a94a4e6f43a6fb7f9e97778663a6d
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:388cf711b1b5d590a0229398057f55a77705a8a95288a6d45c92b375ce7d392c
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (190 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 258.02985853946154, "std_reward": 22.971816741256138, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-29T14:51:54.378446"}
|